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COMPLEXITY EFFECTIVE COMPLEXITY EFFECTIVE 
SUPERSCALAR PROCESSORSSUPERSCALAR PROCESSORS
�Part-I:

Objective: Characterizing Complexity at architecture 
level
Baseline Architecture
Sources of Complexity

µArchitecture components such that ILP ÊÎ complexity Ê
Models for quantifying component delays

�Part-II:
Objective: Propose a Complexity-Effective
µArchitecture

High IPC & High Clock Rate
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE
�Superscalar, o-o-o execute, in order 

complete
�MIPS R10000, DEC Alpha 21264
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Fetch:
Read Fetch-Width Instr-s/clk from I$
Predict Encountered Branches
Send to decoder
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Decode:
Decode instructions into

op|subop|imm.|operands|etc.
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Rename:
Rename the logical operand registers

Eliminate WAR and WAW

Logical register Æ physical register
Dispatch to Issue Window (Instruction Pool)
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Issue Window & Wakeup-Select Logic:
Wait for source operands to be ready
Issue instructions to exec. Units if Î

Source operands ready & functional unit available
Fetch operands from Regfile – or bypass

11/10/2003 Complexity Effective Superscalar 
Processors

8

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Register File:
Hold the physical registers 
Send the operands of currently issued 
instructions to exec. Units – or bypass
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BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Rest of Pipeline:
Bypass Logic
Execution Units
Data Cache
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OTHER ARCHITECTURESOTHER ARCHITECTURES
�Reservation Station Model:

� Intel P6, PowerPC 604
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Baseline Model:

All reg. values reside in 
physical reg-file

Only tags of operands broadcast 
to window
¾ Values go to physical reg-file

Res. Station Model:

Reorder buffer holds 
speculative values; reg-file 
holds commited values
Completing intsr-s broadcast 
operand values to reservation 
station
¾ Issued instr-s read values from 

res. station

Baseline vs. Reservation StationBaseline vs. Reservation Station
�Two Major Differences:
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>
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CRITICAL STRUCTURESCRITICAL STRUCTURES
�Structures with Delay α

Issue Width(IW) | Issue Window(WinSize)
�Dispatch & Issue related structures 
�Structures that broadcast over long wires
�Candidate Structures:

Instruction Fetch Logic
Rename Logic
Wakeup Logic
Select Logic
Register File
Bypass Logic
Caches
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Instruction Fetch LogicInstruction Fetch Logic
�Complexity 

α Dispatch/Issue Width
�As instr. Issue width Ê

Æ Predict Multiple branches
�Non contiguous cache blocks need to be 

fetched and compacted
�Logic Described in [5]
�Delay Models to be developed
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Register Rename LogicRegister Rename Logic

�Map Table: Logical to 
Physical Register Mapping

IW ÊÎ Number of map table ports Ê
�Dependence Check Logic: Detects true 

dependences within current rename group
IW ÊÎ Depth of Dep. Check LogicÊ

�Delay α Issue Width
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Wakeup LogicWakeup Logic

�Part of Issue Window

�‘Wake up’ Instr-s when source operands ready
�When an instr. Issued, its result register tag 

broadcast to all instructions in issue window
WinSize ÊÎ Broadcast Fanout Ê & Wire Length Ê
IW ÊÎ Size of each window entry Ê

�Delay α Issue Width & Window Size
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Selection LogicSelection Logic

�Part of Issue Window

�Select Instr-s from ones with all source operands 
ready & if available FU exists

Selection Policies
WinSize ÊÎ Search Space Ê
# of FUs ÊÎ # of SelectionsÊ

�Delay α
Window Size & # of FUs & Selection Policy
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Register FileRegister File

�Previously studied in [6]
�Access Time α

# of Physical registers & # of read+write 
ports
�Delay α Issue Width
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Data Bypass LogicData Bypass Logic
�Result Wires: Set of wires

to bypass results of completed
but not committed instr-s

# of FUs ÊÎ wire lengthsÊ
Pipeline DepthÊÎ # of wiresÊ & load on wiresÊ

�Operand MUXes: select appropriate values to FU 
I/p ports

# of FUs ÊÎ Fan-in of MUXesÊ
Pipeline Depth ÊÎ Fan-in of MUXesÊ

�Delay α Pipeline depth & # of FUs
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CachesCaches
�Studied in [7] & [8]

�[7] gives detailed low 
level access time analysis
�[8] based on [7]’s methodology, with finer 

detail
�Delay α Cache Size & Associativity
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>
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QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Methodology:

Key Pipeline Structures studied
A representative CMOS design is 
selected from published alternatives
Implemented the circuits for 3 
technologies:

0.8µ, 0.35µ & 0.18 µ
Optimize for speed

Wire parasitics in delay model
Rmetal, Cmetal
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QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Technology Trends:

Shrinking Feature Sizes Æ Scaling
Feature size scaling: 1/S
Voltage scaling: 1/U

�Logic Delays:
CL: Load Cap.: 1Æ 1/S
V: Supply Voltage: 1Æ 1/U
I: Average charge/discharge current: 1Æ 1/U
Overall Scale factor: 1/S
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QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Wire Delays:

L: wire length
Intrinsic RC delay Æ

Rmetal: Resistance per unit length

Cmetal: Capacitance per unit length

0.5: 1st order approximation of distributed RC model
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QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Scaling Wire Delays:

Metal Thickness doesn’t scale much
Width α 1/S

Rmetal α S
Fringe Capacitance dominates in smaller 
feature sizes

Cmetal α S
(Length scales with 1/S)
Overall Scale factor: S.S.(1/S)2 = 1
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity 
�Analysis of Critical Structures

<Mostly from [2]>
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COMPLEXITY ANALYSISCOMPLEXITY ANALYSIS
�Analyzed Structures:

Register Rename Logic
Wakeup Logic
Selection Logic
Data Bypass Logic

�Analysis :
Logical function
Implementation Schemes
Delay in terms of µArchitecture ParamatersÆ

Issue Width
Window Size

11/10/2003 Complexity Effective Superscalar 
Processors

28

Register Rename LogicRegister Rename Logic
�Map Table: Logical Name Æ Physical Reg.

Multiported
Multiple instr-s with multiple operands

�Dependence Check Logic: Compare each source 
register to dest. Reg-s of earlier instr-s in current 
set 

Multiported
Multiple instr-s with multiple operands

�Shadow Table: Checkpoint old mappings to 
recover from branch mispredictions
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Register Rename LogicRegister Rename Logic
-
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If Src Reg, Read From Table
If Dest Reg, add to table
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Map Table ImplementationMap Table Implementation
�Implementation Æ RAM or CAM
�RAM: (Cross Coupled inverters)

Indexed by Logical reg-s = # of entries
Entries: Physical reg-s
Shift-Register for Checkpointing

�CAM:
Associatively searched with logical reg designator
Entries: Logical Reg | Valid Bit
# of entries = # of physical registers

�CAM vs RAM
Similar performance <Only RAM analyzed>
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Dependence Check LogicDependence Check Logic
�Accessed in Parallel with Map Table
�Every Logical Reg compared against logical dest 

regs of current rename group
�For IW=2,4,8, delay less than map table

r1

r4

r4

r4

r4

r1

r4 p2

p7
p1
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Map Table Æ RAM scheme
�Delay Components:

Time to decode the logical reg index
Time to drive wordline
Time to pull down bit line
Time for SenseAmp to detect pull-down
MUX time ignored as control from dep. Check logic comes in advance
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Decoder Delay:
�Predecoding for speed
�Length of 

predecode lines:
Cellheight: Height of 
single cell excluding wordlines

Wordline spacing
NVREG: # of virtual reg-s
x3: 3-operand instr-s
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Rename Logic Delay AnalysisRename Logic Delay Analysis
� Decoder Delay:

� Tnand: Fall delay of NAND
� Tnor: rise delay of NOR

� Rnandpd: NAND pull-down channel resistance
� + Predecode line metal resistance (NAND --- NOR)

0.5 due to distributed R&C model for delay

� Ceq: diff-n Cap. Of NAND + gate Cap. Of NOR + 
interconnect Cap.Î
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Decoder Delay:
�Substituting PredecodeLineLength, Req, Ceq Æ

Tdecode:

�c2: intrinsic RC delay of predecode line
�c2 very small Î
�Decoder delay ~linearly dependent on  IW
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:
� Turn on all access transistors (N1 in cell schematic p.32)

� PREGwidth: 
phys. reg designator width 

� Rwldriver: 
pull-up res. Of driver

� Rwlres:
resistance of wordline

� Cwlcap:
capacitance on word line
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:

�Total Wordline Capacitance:
Total Gate Cap. of access transistors+ wordline wire cap.

B: maximum # of shadow mappings

(Fall Time of inv. + Rise time of driver)

(0.5 for distributed RC)
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:
�Substituting WordLineLength, Rwlres, CwlcapÆ

Twordline:

�c2: intrinsic RC delay of wordline
�c2 very small Î
�Wordline delay ~linearly dependent on  IW
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Rename Logic Delay AnalysisRename Logic Delay Analysis
� Bitline Delay:
� Time from wordline going Hi (Turning on N1) Æ Bitline

going below sense Amp threshold

� c2 very small Î
� Bitline delay ~linearly dependent on  IW
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Rename Logic Delay AnalysisRename Logic Delay Analysis
�Sense Amplifier Delay:
�Sense Amp design from [7]
�Implementation ind. of IW
�Delay varies with IW

Delay α slope of I/p (bitline Voltage) Î
Delay α bitline delay Î

�SenseAmp delay ~linearly dependent on  IW
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Rename Logic Spice ResultsRename Logic Spice Results

� Feature size ÌÎ [increase in 
bitline&wordline delay with increasing IW] Ê

0.8µ: IW 2Æ8 Î Bitline delay Ê 37%
0.18µ: IW 2Æ8 Î Bitline delay Ê 53%

� Total delay increases 
linearly with IW

� Each Component shows 
linear increase with IW

� Bitline Delay > Wordline 
Delay

Bitline length α # of 
Logical reg-s
Wordline length α width 
of physical reg designator
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Wakeup LogicWakeup Logic
�Updating source dependences for instr-s in 

issue window
�CAM, 1 instr-n per entry
�When an instr-n produces its result, tag

associated with the result is broadcast to 
issue window

Each instr-n checks the tag, if matches Î
sets the corresponding operand flag
2 operand/instr-n Î 2xIW comparators / entry
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1 Bit XNOR

Wakeup LogicWakeup LogicOverall
Wakeup Logic:

Single bit CAM cell
(Compares single bit of Tag –data-

with the newcoming result tags)

Go along for 
all tag bits

DISCUSS 
POSSIBLE 

DELAY 
ANALYSIS
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�Critical Path: Mismatch Æ Pull ready signal low
�Delay Components:

Tag drivers Æ drive tag lines - vertical
Mismatched bit: pull down stack Æ pull matchline low 
– horizontal
Final OR gate Æ or all the matchlines of an operand tag

� Ttagdriveα Driver Pullup R & Tagline length & Tagline Load C

Intermediate equations here

Quadratic component significant for IW>2 & 0.18µ

Wakeup Logic Delay AnalysisWakeup Logic Delay Analysis
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�Ttagmatchα Pulldown Stack Pulldown R & 
Matchline length & Matchline Load C

Intermediate equations here

�TmatchORα Fan-in (Delay of a gate α Fan-in2)
<Worst Case Fan-in2 RC>

Quadratic component Small for both cases
Both delays ~linearly dependent on  IW

Wakeup Logic Delay AnalysisWakeup Logic Delay Analysis

11/10/2003 Complexity Effective Superscalar 
Processors

46

Wakeup Logic Spice ResultsWakeup Logic Spice Results
�0.18µ Process
�Quadratic dependence
�Issue width has greater 

effect Æ increase all 3 
delay components

�As IW & WinSize Ê
together Î delay 
actually changes like: 
THIS�Delay wrt Window 

size & Issue width
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Wakeup Logic Spice ResultsWakeup Logic Spice Results
�8 way & 0.18µ Process
�Tag drive delay 

increases rapidly with 
WinSize Ê

�Match OR delay 
constant

�Delay Breakups for 
various WinSizes
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Wakeup Logic Spice ResultsWakeup Logic Spice Results
�8 way & 64 entry window
�Tag drive and Tag match 

delays do not scale as well 
as MatchOR delay 

Match OR Æ logic delay
Others Æ also have wire 
delays

�Delay Breakups for 
different feature sizes
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Wakeup Logic Spice ResultsWakeup Logic Spice Results
�All simulations have max WinSize 64

Larger Window Î Tagline RC delay Ê Ê
(Tagline RC delay α WinSize2)

�For larger windows Î
Use Window Banking

Reduces Tagline length

Improves RC 
Delay by ~x(1/4)
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Selection LogicSelection Logic
�Chooses ready instructions to issue

Might be up to WinSize ready instr-s
Instr-s need to be steered to specific FUs

�I/p Æ REQ: 
Produced by wakeup logic when all operands ready
1 per instr-n in issue window

�O/p Æ GRANT: 
Grants issue to requesting instr-n
1 per request

�Selection Policy 
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Selection LogicSelection Logic

Tree of Arbiters

For a Single FU

REQ Signals GRANT Signals

Location based select policy

Anyreq raised if any req is Hi, 
Grant Issued if arbiter enabled

Root enabled if 
FU available
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Selection LogicSelection Logic
�Handling Multiple FUs of Same Type:

Stack Select logic blocks
in series - hierarchy
Mask the Request granted 
to previous unit

NOT Feasible for More than 2 FUs
Alternative: statically partition issue window 
among FUs – MIPS R10000, HP PA 8000
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Selection Logic Delay AnalysisSelection Logic Delay Analysis
�Delay: time to generate GRANT after REQ
�Delay Components:

Time for REQ to propagate: instr-n Æ Root
Root Delay
Time for GRANT to propagate: Root Æ instr-n

� (L: Depth of Arrbiter Tree)

�4 I/p arbiter cells Optimum Î
Î

�Delay ~logarithmically dependent on  WinSize
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Selection Logic Spice ResultsSelection Logic Spice Results
�Root delay same for 

each WinSize Î
LÊ x2 Æ
DelayÊ < x2

�Logic Delays Î
Scale well with 
feature size

�Caution!: Wire 
delays not included!

L=2
L=3

L=4
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Data Bypass LogicData Bypass Logic
�Result Forwarding
�Number of possible bypasses:

S pipestages after first result stage & 2 I/p FUs 
Î

�Key Delay Component:
Delay of result wires Æ bypass length & load
Strongly layout dependent
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Data Bypass LogicData Bypass Logic
Commonly Used Layout:

1 Bit-Slice

Turn on Tri-
State A to pass 
result of FU1 

to left operand 
of FU0
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Data Bypass Logic Delay AnalysisData Bypass Logic Delay Analysis
�Delay Æ Generic wire delay: 

L is dependent on # of FUs (IW) & FU heights
Pipeline depthÊÎ C Ê <NOT implemented in simulations!>

�Typical FU heights:
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Data Bypass Logic Delay AnalysisData Bypass Logic Delay Analysis
�Computed delays for hypothetical 

machines: 

(Delay independent of feature size)
� Delay dependent on (IW)2



30

11/10/2003 Complexity Effective Superscalar 
Processors

59

Data Bypass Logic Data Bypass Logic Alternative LayoutsAlternative Layouts

�Delay computation directly dependent on 
layout

Future Æ Clustered Organizations (DEC 21264)

Each cluster of FUs with its own regfile
Intra-Cluster bypasses: 1 cycle
Inter-Cluster bypasses: 2 or more cycles

µArch & compiler effort to ensure inter 
cluster bypasses occur infrequently
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY
�Summary:

4 Way ÆWindow Logic is bottleneck
8 Way Æ Bypass Logic is bottleneck
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CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY
�Summary:

Future ÆWindow logic! & Bypass logic!
Both are ‘atomic’ operations: 
- dependent instr-s cannot issue consecutively if 
pipelined
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COMPLEXITY EFFECTIVE COMPLEXITY EFFECTIVE 
MICROARCHITECTUREMICROARCHITECTURE

�Brainiac & Maniac
High IPC & High CLK rate

�Simplify Wakeup & Selection Logics
�Naturally extendable to clustering Î

Can solve bypass problem
�Group dependent instr-s rather than 

independent ones Æ
�Dependence Based Architecture
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DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE

�Dependent instr-s cannot execute in parallel
�Issue Window Æ FIFO buffers (issue inorder)

‘Steer’ dependent instr-s to same FIFO

�Only FIFO heads need check for ready operands
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DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�SRC_FIFO Table:

Similar to Map table
Indexed with logical 
register designator
Entries: SRC-FIFO(Rs)=FIFO where the instr-n 
that will write Rs exists. <Invalid if instr-n 
completed>
Can be accessed parallel with map table 
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DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�Steering Heuristic:

If all operands of 
instr-n in regfileÎ
Steer to an empty FIFO
Instr-n has a single outstanding operand to be written 
by Inst0, in FIFO F0 Î

No instr-n behind Inst0 Î steer to Fa
O/w Î steer to an empty FIFO

Instr-n has 2 outstanding operands to be written by 
Inst0&Inst1 in Fa & FbÎ

No instr-n behind Inst0 Î steer to Fa
O/w Æ No instr-n behind Inst1 Î steer to Fb
O/w Î steer to an empty FIFO

If all FIFOs full/No Empty FIFOs Î STALL
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DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�Steering Heuristic <Ex>: Steer Width: 4

4-way(IW)
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Performance ResultsPerformance Results
�Dependence Arch. vs. Baseline

8 FIFOs, 8 entries/ FIFO vs. WinSize=64
8 –way, aggressive instr-n fetch (no block)
SimpleScalar
Simulation Æ
SPEC’95
0.5B instr-s
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Performance ResultsPerformance Results
�Dependence Arch. vs. Baseline:

Instr-s committed per cycle

Max 
Performance 
Degradation 

8% in li
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Complexity AnalysisComplexity Analysis
�Wakeup Logic:

Need not to broadcast result tags to all window 
entries Æ only to FIFO heads
Reservation Table:

1 bit per regÆ ‘Waiting for data’
Set result reg when instr-n dispatched
Clear when instr-n executes

Instr-n at FIFO head checks its operands’ bits
Delay of Wakeup logic Æ

Delay of Reservation table access
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Complexity AnalysisComplexity Analysis
�Reservation Station vs. Baseline Wakeup:
�Reservation Station: 80 Regs, 0.18µ:

�Window-Based arch. 32&64 Regs:
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Complexity AnalysisComplexity Analysis
�Instruction Steering:
�Done parallel with renaming
�SRC-FIFO table smaller than rename table

Smaller delay
�Summary:

Wakeup-Select Delay reduced
Faster clock rate ~39%
IPC Performance degrade < 8%
Î ~ 27% execution speed advantage
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Clustered ArchitectureClustered Architecture
�2x4 way:

�Local Bypass Æ
single cycle

�Inter cluster 
bypass Æ
> 1 cycle

�Regfiles 
identical, within 
a cycle delay
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Clustered ArchitectureClustered Architecture
�Advantages:

Wakeup-Select Function already simplified
Steer Heuristic Æ Dependent instr-s to same 
FIFO Î less inter cluster bypasses
Critical bypass logic delay reduced – Main 
motivation of clustering
Regfile Access delay reduced as # of ports Ì

�Heuristic Modified:
Two separate free FIFO lists for each cluster
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Clustered Architecture Clustered Architecture PerformancePerformance

�2x4 way Dependence Arch. vs. 8-way 
baseline architecture

2x4 8-entry FIFOs vs. 64 entry window
Inter-cluster bypass Æ 2 cycles vs. all single 
cycle bypasses

Instr-s committed per cycle

Max Performance 
Degradation 12% 

in m88ksim
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Clustered Architecture Clustered Architecture PerformancePerformance

�Dependence Arch will have higher clock 
rate: > 4-way, WinSize 32, baseline Î

�Potential Speedup over Window based 
architecture > 88% x 125% = 110%

�More than 10% performance 
improvement over baseline

25.1
578
724

324
648

≅==
windowentrywayofDelay
windowentrywayofDelay

Speed
Speed

WindowArch

Archdependence
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Other Clustered ArchitecturesOther Clustered Architectures
�In all cases, inter cluster bypass Æ 2 cycles
�1) Single Window, Execution Driven Steering:

Steer to cluster which 
provides the source 
operands first
Higher IPC than 
double window
Back to the complex wakeup-select logic /
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Other Clustered ArchitecturesOther Clustered Architectures
�2) 2 Windows, Dispatch Driven Steering:

Similar to dependence architecture
Random access windows rather than FIFOs
Steer with a similar dependence heuristic
Still somewhat complex wakeup-select logic /
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Other Clustered ArchitecturesOther Clustered Architectures
�3) 2 Windows, Random Steering:

Same as dispatch driven architecture
Steer randomly
For Theoretical baseline comparison
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Other Clustered ArchitecturesOther Clustered Architectures
�4) Clustered Dependence ArchitectureÆ

2 Set of FIFOs, Dispatch Driven Steering:

Simple Wakeup Select Logic ☺
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Performance ComparisonPerformance Comparison
� Ideal Æ 64 entry window, single 

bypass all
� Others ÆWinSize:1) 64x1 

2)32x2 3)32x2 4)(4x8)x2
�Max performance degradation 

26% (m88ksim)
� Almost always as well as 2 

windows dispatch driven steer

� Suspicion: m88ksim FIFO does 
better than 2 window dispatch 
driven steer?
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ConclusionsConclusions
�Window & bypass logic are future (for 1997) 

performance bottlenecks
�Clustered Dependence Based Architecture 

Performs with little IPC degradation, additional 
clock speed aggregates 16% speedup over current 
baseline model.

�Wider IW and smaller feature sizes will empasize 
this speedup
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ADDITIONALADDITIONAL
SLIDESSLIDES
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MIPS R10000 PIPELINE

Back
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INTEL P6 PIPELINE

Back



43

11/10/2003 Complexity Effective Superscalar 
Processors

85

INSTRUCTION FETCH LOGIC

Back

� Trace cache can fetch past multiple 
branches: merged in line-fill buffer

� Core unit: Predictor + BTB + RAS
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Register File Complexity Analysis [6]

Back

�Analysis for 4 way & 8 way processors
4 way Æ 32 Entry Issue Window
8 way Æ 64 Entry Issue Window

�Different Register File Organizations
Issue Width Æ # of Read/Write Ports

4 way Æ Integer Regfile: 
8 Read & 4 Write Ports

Floating Point Regfile:
4 Read & 2 Write Ports

8 way Æ Integer Regfile:
16 Read & 8 Write Ports

Floating Point Regfile:
8 Read & 4 Write Ports

Different Regfile sizes
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� FP Regfile faster than Int Regfile Å Less Ports
� Doubling number of ports Î

Double # of wordlines and bitlines
Quadruple Regfile Area

� Doubling number of Registers Î
Double # of wordlines

Double Regfile Area

Register File Complexity Analysis [6]

Back

11/10/2003 Complexity Effective Superscalar 
Processors

88

� Ndwl, Ndbl, Ntwl, Ntbl Æ Layout parameters
� Access Time = Decoder Delay + Word-line delay + Bit-line/Sense 

Amplifier Delay + Data Bus Delay
� Formula & Derivations in paper
� Time breakdown plots not descriptive of cache parameters

I.e Twl vs. (B.8).A/Ndwl

Cache Access Time [7]

Back
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� Ndwl, Ndbl, Ntwl, Ntbl 
Layout parameters:

a. 2-Way Set Assoc. 
(A=2), Ndwl=Ndbl=1

b. A=2, Ndwl=2, Ndbl=1
c. A=1, Ndwl=Ndbl=1
d. A=1, Ndwl=1, Ndbl=2

Cache Access Time [7]

Back
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� With correct layout parameters:
Delay α Access Time, 1/(Block 
Size), and NOT Associativity 

Cache Access Time [7]

Back

Access Time α
log(Cache Size) for 
small caches

Direct mappedLarger Block sizes 
give smaller access 
times if optimum
Ndbl,Ndwl used

Associativity doesn’t 
change access time if 
optimum Ndbl,Ndwl
used??
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�Additional Layout parameters: Nspd & Ntsbd
How many sets are mapped to a single wordline

�optimum Ndwl, Ndbl, and Nspd depend on cache 
and block sizes, and associativity.

Cache Access Time [8]

Back
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� Cache Size vs. Access Time:
Block size=16 Bytes
Direct Mapped Cache
For each size, optimum 
layout parameters used
Access time breakdowns are 
shown
Comparator delay significant
Cache Size ÊÎ Access 
TimeÊ

Cache Access Time [8]

Back
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� Block Size vs. Access Time:
Cache size=16 KBytes
Direct Mapped Cache
For each block size, optimum 
layout parameters used
Access time breakdowns are 
shown
Access time Ì due to drop in 
decoder delay
Block Size ÊÎ Access 
Time Ì

Cache Access Time [8]

Back
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� Associativity vs. Access Time:
Cache size=16 KBytes
Block Size 16 bytes
For each case, optimum 
layout parameters used
Access time breakdowns are 
shown
Associativity ÊÎ Access 
Time Ê

Cache Access Time [8]

Back
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Distributed RC Model

Back
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Sense Amplifier [7]

Back
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Wakeup Logic Tagline Equations

Back
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Wakeup Logic Matchline Equations

Back
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