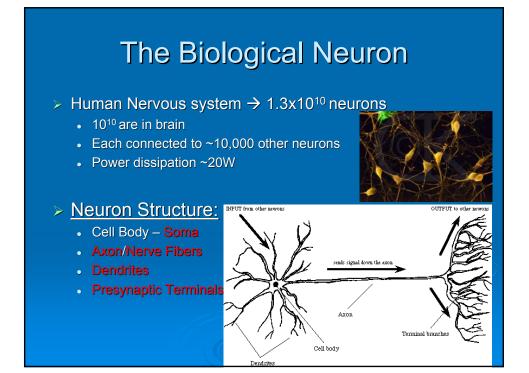
Introduction to Neural Networks & Neural Computation

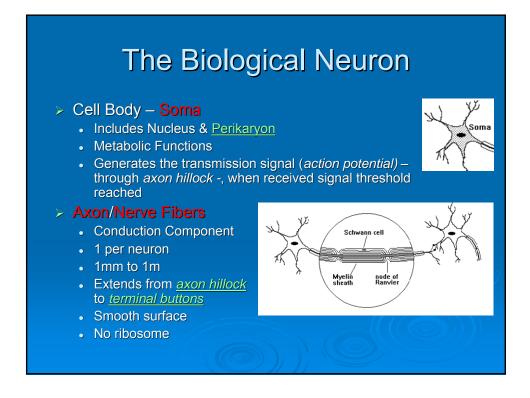
Canturk Isci & Hidekazu Oki

Spring 2002 - ELE580B

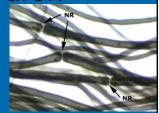
Presentation Overview

- > Biological Neurons
- > Artificial Neuron Abstractions
- > Different types of Neural Nets
 - Perceptron
 - Multi-layer Feed-forward, Error Back-Propagation
 - Hopfield
- Implementation of Neural Nets
 - Chemical & biological systems
 - Computer Software
 - VLSI Hardware
- > Alternative Model Action Potential timing





- Axon/Nerve Fibers Myelin Sheath & Nodes of Ranvier
 - · axons enclosed by myelin sheath
 - \rightarrow many layers of schwann cells
 - \rightarrow promote axon growth



- Myelin sheath insulates axon from extracellular fluid: thicker myelin → faster propagation
- Myelin sheath gaps: Nodes of Ranvier

 → Depolarization occurs sequentially
 → trigger next node → impulse propagates to next hop & restored at each node (buffering)

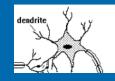
The Biological Neuron

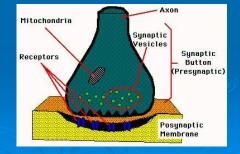
Dendrites

- The receiver / input ports
- Several Branched
- Rough Surface (dendritic spines)
- Have ribosomes
- No myelin insulation

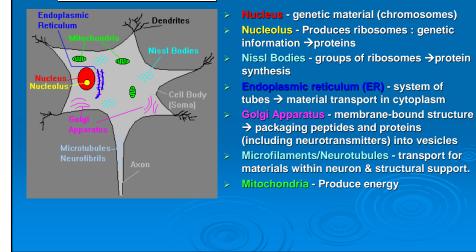
Presynaptic Terminals

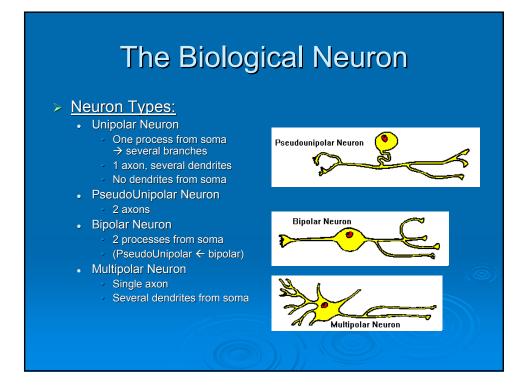
- The branched ends of axons
- Transmit the signal to other neurons' dendrites with neurotransmitters





> Inside of a Neuron:





> Synapse:

- Junction of 2 neurons
- Signal communication
- Two ways of transmission:
 - Coupling of ion channels \rightarrow Electrical Synapse
 - $\,\cdot\,$ Release of chemical transmitters \rightarrow Chemical Synapse
- > Chemical Synapse:
 - Presynaptic neuron releases <u>neurotransmitters</u> through synaptic vesicles at terminal button to the synaptic cleft – the gap between two neurons.
 - · Dendrite receives the signal via its receptors
 - [Excitatory & Inhibitory Synapses Later]

The Biological Neuron

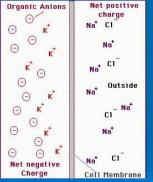
> Membrane Potential:

- 5nm thick, semipermeable
- · Lipid bilayer controls ion diffusion
- Potential difference ~70 mV
- Charge pump:
 - Na⁺ →
 - Contrade Cell

Resting Potential:

 $\bullet \in \mathsf{K}^{*}$

- When no signaling activity
- Outside potential defined 0
 - → Vr = ~ -70mV



dendrit

synaptic cleft

presynaptic membrane

Net negative

ATE

ADF

Inside

Charge

+ Net positive

Charge

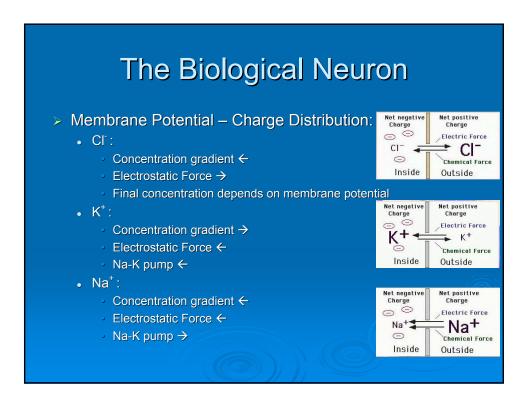
Outside

Na⁺

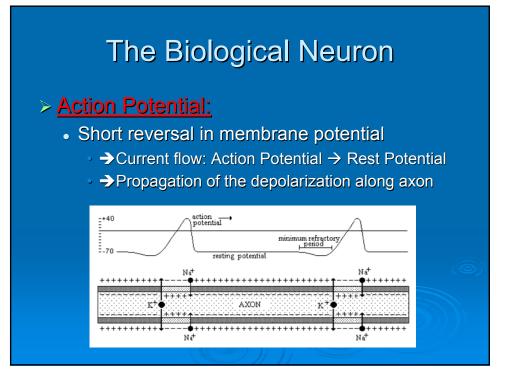
K Pump

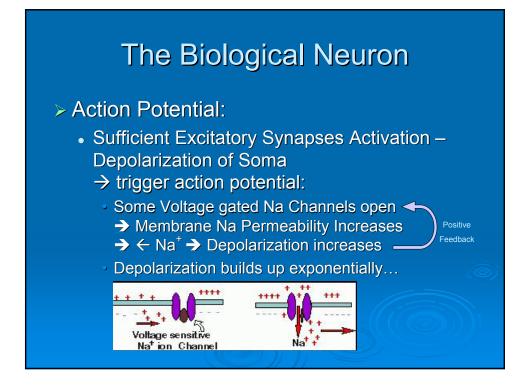
Na⁺

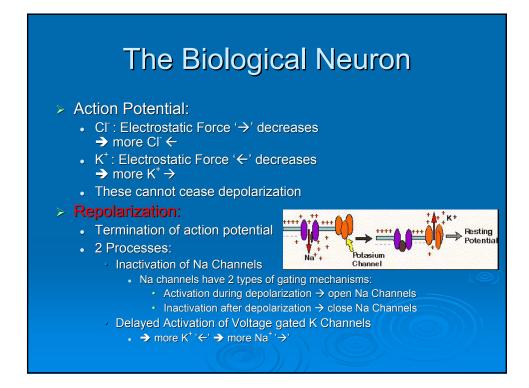
- Membrane Potential Charge Distribution:
 - Inside: More K⁺ & Organic Anions (acids & proteins)
 - Outside: More Na⁺ & Cl⁻
 - 4 Mechanisms that maintain charge distribution = membrane potential:
 - 1) Ion Channels:
 - Gated | Nongated
 - Selective to specific ions
 - Ion distribution ← channel distribution
 - 2) Chemical Concentration Gradient
 - Move toward low gradient
 - 3) Electrostatic Force
 - Move along/against E-Field
 - 4) Na-K Pumps
 - Move Na & K against their net electrochemical gradients
 - Requires Energy \rightarrow ATP Hydrolysis (ATP \rightarrow ADP)



<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>







- > Action Potential Complete Story:
 - Neurotransmitters → Dendrites Receptors
 → Initiate synaptic potential
 - Potential spreads toward initial axon segments
 Passive excitation no voltage gated ion channels involved
 - Action potential initiation at axon hillock
 - highest voltage gated ion channel concentration
 Happens if arriving potential > voltage gated channel threshold
 - Wave of depolarization/repolarization propagates along axon
 - Turns on transmission mechanisms at axon terminal
 - Electrical or Chemical Synapse

The Biological Neuron

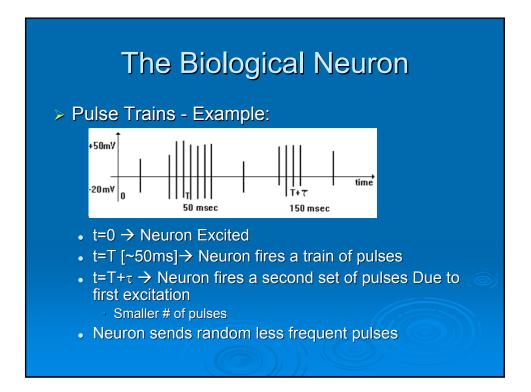
> Refractory Period:

- Once an action potential passes a region, the region cannot be reexcited for a period ~1ms

 - Max pulse rate ~1Khz
- → Electrical pulse propagates in a single direction
 - Inverse hysteresis?
 - Mexican wave
- Electrical signals propagate as *pulse trains*

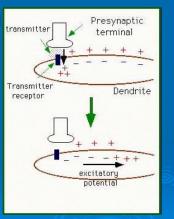
> Pulse Trains:

- Non-digital signal transmission nature
- Intensity of signal → frequency of pulses
 Pulse Frequency Modulation
- Almost constant pulse amplitude
- Neuron can send pulses arbitrarily even when not excited!
 - Much Less Frequency Noise



Biological Neuron: Processing of Signals

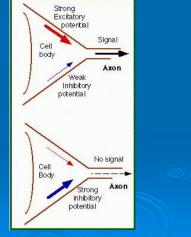
- A cell at rest maintains an electrical potential difference known as the resting potential with respect to the outside.
- An incoming signal perturbs the potential inside the cell. Excitatory signals depolarizes the cell by allowing positive charge to rush in, inhibitory signals cause hyperpolarization by the in-rush of negative charge.



http://www.ifisiol.unam.mx/Brain/neuron2.htm

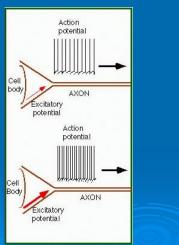
Biological Neuron: Processing of Signals

 Voltage sensitive sodium channels trigger possibly multiple "action potentials" or voltage spikes with amplitude of about 110mV depending on the input.



http://www.ifisiol.unam.mx/Brain/neuron2.htm

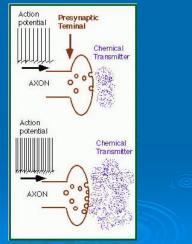
- Axon transmits the action potential, regenerating the signal to prevent signal degradation.
- Conduction speed ranges from 1m/s to 100m/s. Axons with myelin sheaths around them conduct signals faster.
- Axons can be as long as 1 meter.



http://www.ifisiol.unam.mx/Brain/neuron2.htm

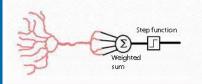
Biological Neuron: Output of Signal

- At the end of the axon, chemicals known as neurotransmitters are released when excited by action potentials.
- Amount released is a function of the frequency of the action potentials. Type of neurotransmitter released varies by type of neuron.

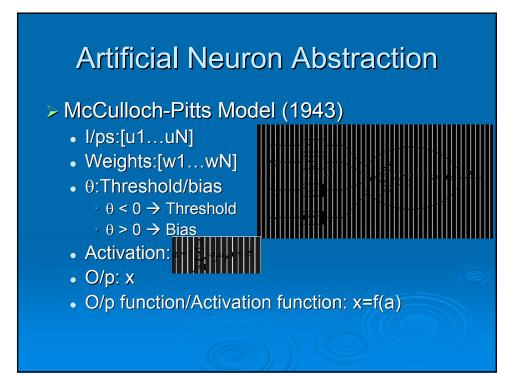


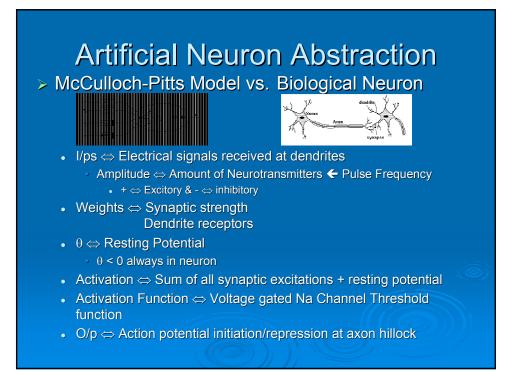
http://www.ifisiol.unam.mx/Brain/neuron2.htm

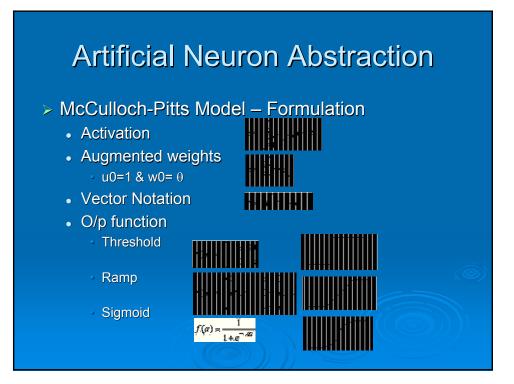
Artificial Neuron Abstraction

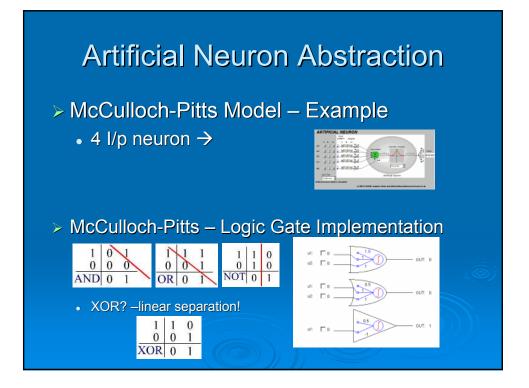


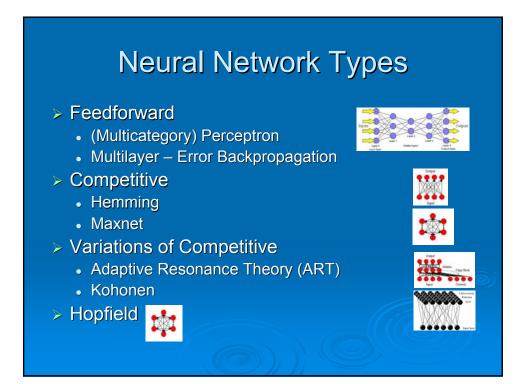
- > Neuron has multiple inputs
- Inputs are weighted
- > Neuron "fires" when a function of the inputs exceed a certain threshold
- > Neuron has multiple copies of same output going to multiple other neurons









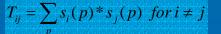


Hopfield Networks

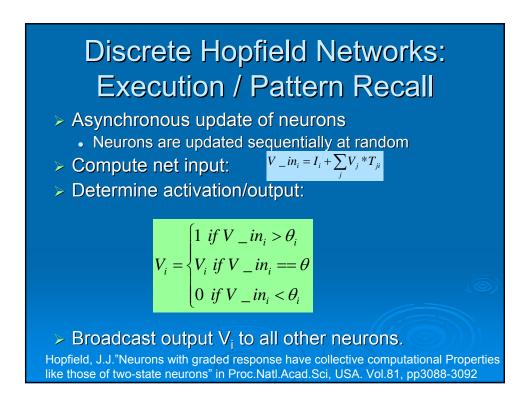
- First developed by John Hopfield in 1982
- Content-Addressable Memory
- > Pattern recognizer
- > Two Types: Discrete and Continuous
- Common Properties:
 - Every neuron is connected to every other neuron. Output of neuron i is weighted with weight w_{ij} when it goes to neuron j.
 - Symmetric weights: w_{ij} = w_{ji}
 - No self-loops: w_{ii} = 0
 - Each neuron has a single input from the outside world

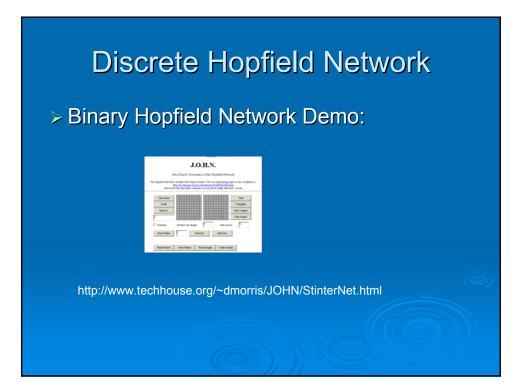
> Training: (Storing bipolar patterns)

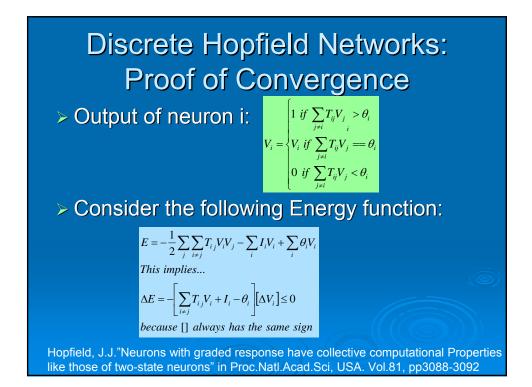
- Simultaneous, Single-step
- Patterns: s(p) = {s₁(p), s₂(p), ..., s_n(p)}
- Weight Matrix W = {w_{ii}}

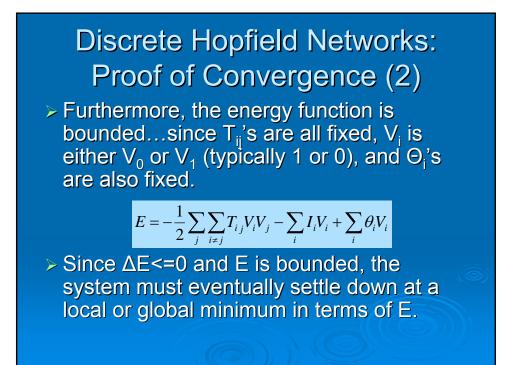


Fausett, Laurene. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice Hall, Englewood Cliffs, NJ, 1994.



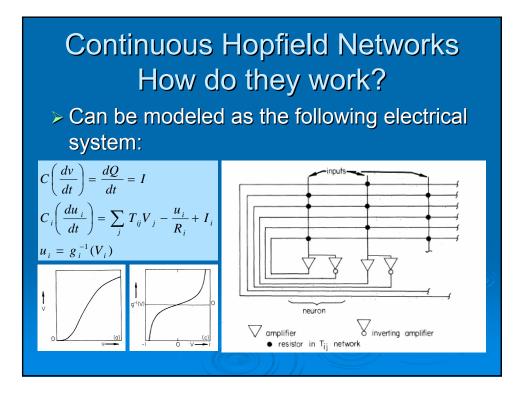


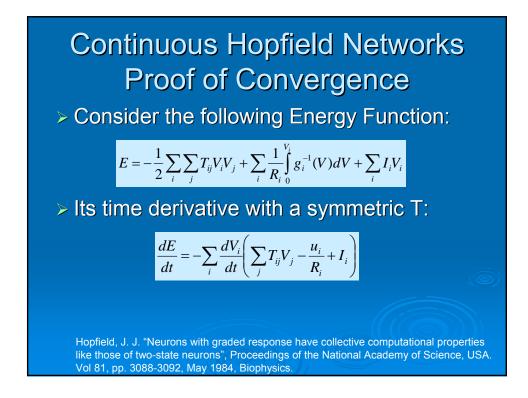




Continuous Hopfield Networks

- Continuous values for neuron states and outputs instead of discrete binary or bipolar values.
- Simultaneous update instead of serial asynchronous update of discrete network
- Chemical system can emulate continuous hopfield nets

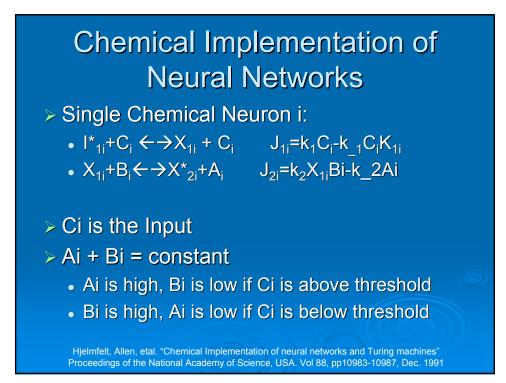


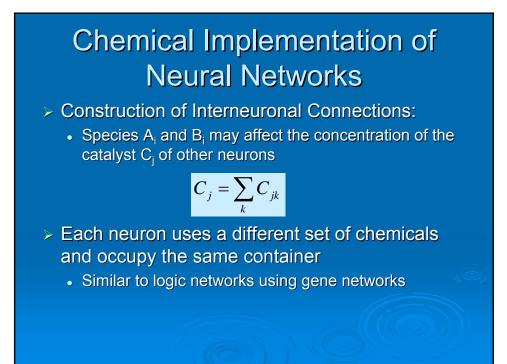


Continuous Hopfield Networks Proof of Convergence The bracket inside the time derivative of the energy function is the same as that in the original function describing the system.

$$\frac{dE}{dt} = -\sum_{i} \frac{dV_{i}}{dt} \left(\sum_{j} T_{ij} V_{j} - \frac{u_{i}}{R_{i}} + I_{i} \right) C_{i} \left(\frac{du_{i}}{dt} \right) = \sum_{j} T_{ij} V_{j} - \frac{u_{i}}{R_{i}} + I_{i}$$
$$\frac{dE}{dt} = -\sum_{i} C_{i} \left(\frac{dV_{i}}{dt} \right) \left(\frac{du_{i}}{dt} \right)$$
$$= -\sum_{i} C_{i} C_{i} C_{i} \left(\frac{dV_{i}}{dt} \right)^{2} \leq 0, \frac{dE}{dt} = 0 \implies \frac{dV_{i}}{dt} = 0 \text{ for } \forall i$$

Hopfield, J. J. "Neurons with graded response have collective computational properties like those of two-state neurons", Proceedings of the National Academy of Science, USA. Vol 81, pp. 3088-3092, May 1984, Biophysics.

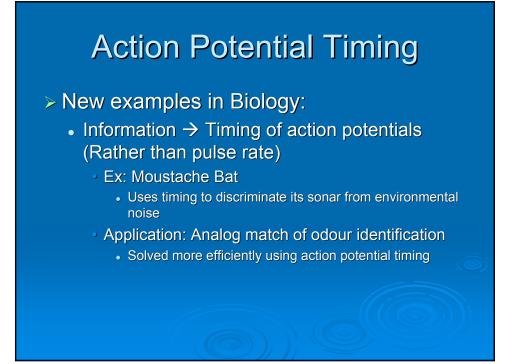


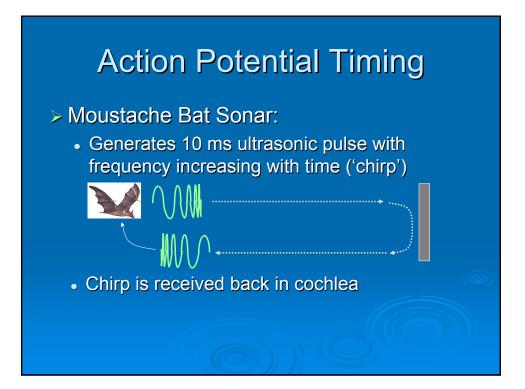


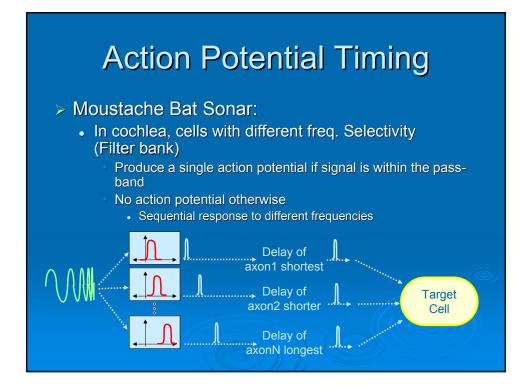
Chemical Implementation of Neural Networks: AND gate

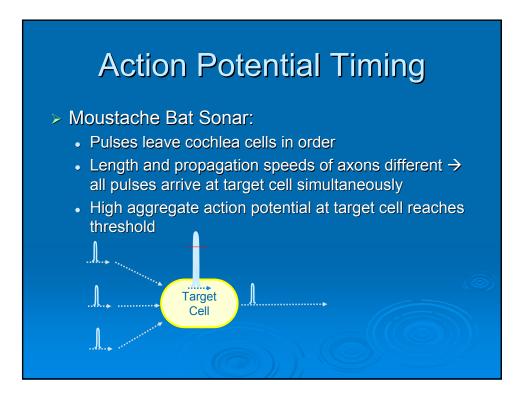
> Ai and Aj are output

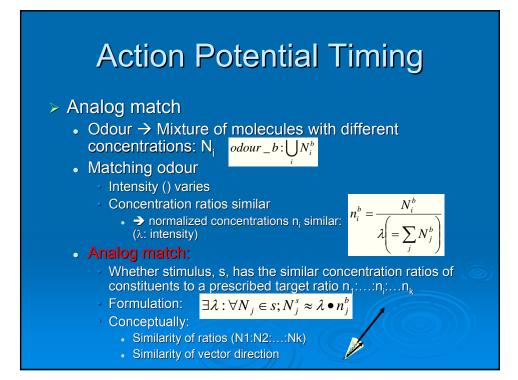
- [Alternative to Neural Network Communication Model]
- Neurons communicate with action potentials ->
- Engineering models for neuron activity use continuous variables to represent neural activity
 - Activity → <rate of action potential generation>
- \succ Traditional neurobiology: same modelightarrow
 - "short term mean firing rate"
- Average pulse rate is inefficient in neurobiology
 - Single neuron → Wait for several pulses → slow
 - Multiple equivalent neurons→ average over → redundant 'wetware' & error

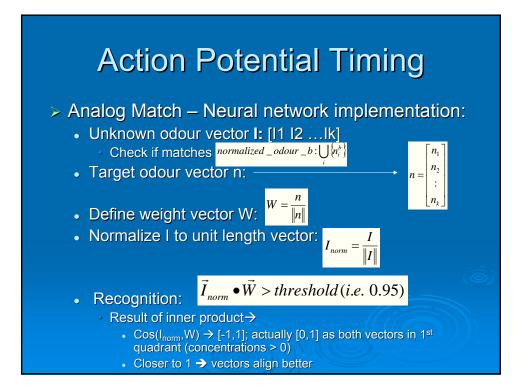










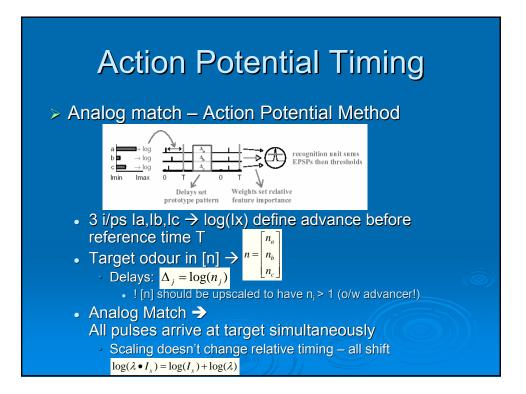


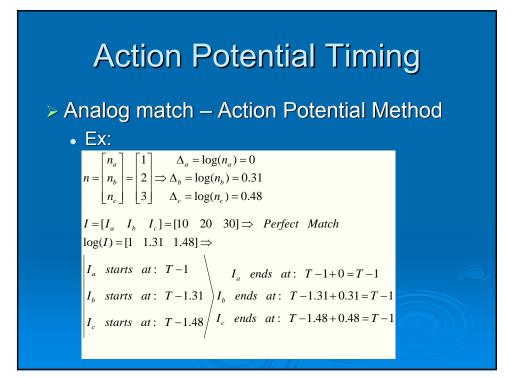
Action Potential Timing

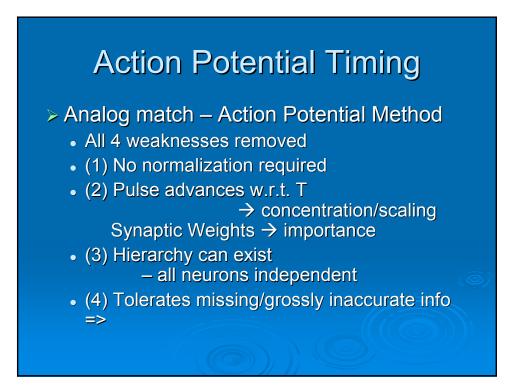
> Analog Match – Neural network implementation:

4 weaknesses:

- Euclidean normalization expensive
- If weak component (in conc.) has importance or strong is unreliable, we cannot represent this – weights describe only concentration of comp-s
 - We can have 'weighted' weights
 - [w1]: conc. Ratios & [w2]: priorities → W=w1.*w2
- No Hierarchical design \rightarrow normalization problem
- No tolerance to missing i/ps or highly wrong i/ps
 - I.e. n1:n2:n3:n4:n5 1:7:1.5:0.4:0.1 (/10)
 - -> {|1,|2,|3,|4,|5}: {1, **0**, 1.5, 0.4, 0.1}
 - -> {I1,I2,I3,I4,I5}: {1, 7, **9**, 0.4, 0.1}







Action Potential Timing

- > Analog match
- > Error Tolerance Comparison of 2 Methods:
 - Target = n = [1 1 1]'

 Neural Net Model → The cone around [1 1 1] vector defines tolerance: projects a ~circle on unit circle

- Action Potential Timing → makes bisectors → star shape Finds individual scalings: pulses with same scaling overlap
- Received I/p = I = [1 1 0]→
 - Neural net needs to accept almost every i/p
 Action potential timing detects similarity
 - Action potential timing detects similarity

