
1

WHAT TO IMPLEMENT

Pipelined 2-BANGER
ISA: PLX1.0
Hazard Detection
Bypassing Logic
Predication

2

HOW TO IMPLEMENT
Design Entry VHDL
Think Top Down
Implement Bottom Up
Hierarchy:

Top level Design – Testbench
Leaf Cells:

Memory Units
Execution Units To be provided as RTL by other groups
Control Logic
Storage Registers
Mux’s
etc…

TARGET ISA SPECS –PLX1.0

Subword Parallel
Predicated, 8 Predicate Regs: P0…P7

P0 = 1!
16 Predicate Register Sets

32 64 bit GPRs: R0…R31
R0 = 0!

32 bit Instructions: 5 Formats

3

DESIGN OVERVIEW

Generic 2-Way Superscalar?
2 Execution Pipes

ALU/Shift-Permute/Multiplier

Single Load/Store Pipe
7 Port RegFile
Out of order Completion

WAW hazards may still occur
3 Register write ports still needed

DESIGN OVERVIEW
ACTUAL DESIGN:

2 Symmetrical Execution Pipes
Each with 1 ALU, 1 Shift-Permute, 1 Multiplier

Multiplier Takes 3 Cycles – Pipelined -, ALU and Shift-Permute Single Cycle

Single Load Store Pipe Single Data Cache
Single 7 Port Register File
Single Instruction Memory
Single Predicate Register File
Memory Reference can be from each pipe
Standard Bypassing

One Special W E bypass [Later]
Forwarding for Predicate Registers [Later]

Control Signals are Pipelined as well
Additional Pipe Registers for Multiplier Control [Later]

4

TOP LEVEL DESIGN
TOP LEVEL DESIGN

Instruction Memory
PC Generator
IF/DR Pipe Regs
GPR File
DR/E Pipe Regs
Multipliers
ALU Units
Shift-Permute Units
E/DF Pipe Regs
Data Cache
DF/W Pipe Regs
Additional Pipe Regs for

Multipler Control
W DF Bypass
W E Bypass
DF DF Bypass
DF E Bypass
E E Bypass

<LEAF LEVEL> COMPONENTS
1) ALU

Behavioral Level
Performs required functions
for the testbenches

padd.sw
cmp
psub.sw
loadi.hi/lo
load.8.update
load.8
store.8.update

5

COMPONENTS

1) ALU - Simulation

padd.8 15, 32 padd.8 -99, 32

padd.2 x35_24_45_23, x00_00_11_11

COMPONENTS

1) ALU - …Simulation

cmp.eq 10, -10cmp.ge -8, 764cmp.geu -8, 764cmp.geu 764,-8cmp.geu -764,-8cmp.geu 764,8

6

COMPONENTS

2) MULTIPLIER
Behavioral Level
Performs:

pmul.odd
pmul.odd

Requires Reset & Clk for the 3 stage pipe

COMPONENTS

3) SHIFT-PERMUTE UNIT
Behavioral Level
Provided by Group1

7

COMPONENTS

4) PREDICATE REGISTER FILE
16 predicate banks,

4 bit address to specify
each bank 8 bit predicate set

2 Read Ports, for Pi,Pj
2 3-bit read addresses

4 Bitwise writes for Pi,Pj and Pk,Pl
4 3-bit write addresses

1 Byte write port
1 4-bit write address

COMPONENTS

5) GPR FILE
32 64-bit Registers
4 Read Ports

4 5-bit addresses

3 Write Ports
3 5-bit addresses

8

COMPONENTS

6) INSTRUCTION DECODER
Interprets/Decodes Instructions
Separates the Instruction Filelds

Opcode, Subop, Rd, Rs, Imm, etc.

Sets/clears write-enable bits for
different instructions

COMPONENTS

7) PIPELINE REGISTERS
Pipe Data through Datapath
Pipe Control Signals through Control Path

8) CONTROLLER
Pure Combinational Logic
Checks the piped instruction fields and
predicates to detect hazards/stalls/bypasses

9

COMPONENTS

9) INSTRUCTION MEMORY
32-words, Big-Endian, Byte Addressed

1Kb 256 wordlines

Aligned Addressing (!jmp imm multiple of 4)
Initialized from “Instruction_image.ini”

10) DATA MEMORY
Similar to Instruction Memory
Single write/read address

Pipeline Organization
Two symmetrical pipelines
Standard data forwarding logic for
general purpose register file
Data forwarding logic for predicate
register file
Special pipeline register for PMUL
instructions

10

Datapath diagram

Please refer to our web page

Symmetrical pipelines

Two symmetrical pipelines:
Each includes 1 ALU, 1 SHF and 1 MUL

They share 1 data cache and 1 LD/ST
pipe, thus need data merging unit

Data merging is done in E stage

11

E-stage data merging

Reasons for E-stage data merging-I
Simpler Control Logic: though the decision
can be made in DR stage, it needs complex
condition-match checking logic. This is
mainly because the validity of an
instruction can not be completely
determined until in E stage.

E-stage data merging

Reasons for E-stage data merging-2
To reduce the length of critical path in DF
stage:data cache is the slowest component
in the processor. Put data merging logic in
DF stage will lengthen the critical path in
DF stage and may result in longer cycle
time. Indeed, in our design, no other
component is connected with cache in
serial.

12

Data Forwarding: GPRF

Standard data forwarding path:
E-E, E-DF, DF-E, DF-DF forwarding

Special data forwarding path:
W-E forwarding

W-E forwarding

Equivalent Structure

Register File

MUX

Write back

Read out

13

W-E forwarding

Advantages:
Avoid the 2-phase write/read operation cycle:
overlapped read and write operations
Considerably shorten the length of critical

path in DR stage, and comparators in DR may
be possible???

write read
read
write

A bug in data forwarding

We found a bug for JMP.reg instruction.
We didn’t implement data forwarding
path to JMP address calculator.
We will fix it after the presentation.

14

Data forwarding: Pred Reg

Data Forwarding: Pred Reg
Where to place the comparators?

Use ALU as “comparator”: Compare in E stage
pros: less hardware, operations are regular

and no “side-effect”;
cons: maybe the long critical path for data

forwarding;
Possible solution: use faster comparator in

parallel with ALU, i.e., in E stage, to
reduce the length of the critical path

15

Data Forwarding: Pred Reg

Where to place the comparators?
Use special comparators in DR stage:
pros: short critical path for data forwarding;
cons: long critical path in DR stage: its

operands should come from the outputs
of the MUXs to receive correct source
data(forwarded data)

Data Forwarding: Pred Reg

Types of forwarding path:
E-E forwarding
E-DF forwarding
DF-E forwarding
W-E forwarding

E-DF forwarding and “unknown” bit

16

E-DF forwarding & ”unknown”
Left way Right way

If the above condition is satisfied, one can not
determine whether the instruction in right way is
valid or not until in E-stage. So first in DR stage, we
set the unknown bit, then in E stage, if “unknown” is
true, the E-DF forwarding is selected.

P0: CMP R1,R2,P1,P2 P1: some instruction

MUL PIPES

Why use MUL PIPEs?
DRE

EDF

DFW

Control flow

Data flow

17

MUL PIPES

How do MUL PIPEs work?
DRE

EDF

DFW

Control flow

Data flowMUL PIPES

MUL PIPES

Hazard Detection

Structural Hazards requiring stalls
Hazards in LD/ST pipe
Hazards related to PMUL instructions

IF DR E E E DF W
IF DR E DF W

IF DR E DF W

18

Hazard Detection

Data Hazards requiring stalls
Instructions that cause pipeline interlock
1) LD 2) PMUL
3) CMP followed by JMP/Changepr

Control Hazards
No stalls are caused by JMPs. Actually,
they work in a predict-untaken manner in
our implementation

Hazard Detection

Number IF/DR0 IF/DR1 Results

1 ALU/PMUL/LDi/LD/ST.upd ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR1

2 LD/ST LD/ST Stall IF/DR1

3 CMP/CHPR JMP/CHPR Stall IF/DR1

4 CHPR any Stall IF/DR1

IF/DR0---IF/DR1

19

Hazard Detection
DR/E0---IF/DR0

Number DR/E0 IF/DR0 Results

5 PMUL/LD ALU/LD/ST/JMP.reg/CMP/PMUL Stall IF/DR

6 CMP/CHPR CHPR Stall IF/DR

DR/E0---IF/DR1

Number DR/E0 IF/DR1 Results

7 PMUL/LD ALU/LD/ST/JMP.reg/CMP/PMUL Stall IF/DR1

8 CMP/CHPR CHPR Stall IF/DR1

Hazard Detection
DR/E1---IF/DR0

DR/E1---IF/DR1

Number DR/E1 IF/DR0 Results

9 PMUL/LD ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR

10 CMP/CHPR CHPR Stall IF/DR

Number DR/E0 IF/DR1 Results

11 PMUL/LD ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR1

12 CMP/CHPR CHPR Stall IF/DR1

20

Hazard Detection
E/DF0---IF/DR0

E/DF0---IF/DR1

Number E/DF0 IF/DR0 Results

13 PMUL ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR

14 PMUL any instruction that will write
RF except PMUL insructions Stall IF/DR

Number E/DF0 IF/DR1 Results

15 PMUL ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR1

Hazard Detection
E/DF1---IF/DR0

E/DF1---IF/DR1

Number E/DF1 IF/DR0 Results

16 PMUL ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR

Number E/DF1 IF/DR1 Results

17 PMUL ALU/LD/ST/JMP.reg/CMP/P
MUL Stall IF/DR

18 PMUL any instruction that will write
RF except PMUL insructions Stall IF/DR

21

Hazard Detection: For JMPs
IF/DR0---IF/DR1

DR/E0 or 1---IF/DR0 or 1

Number IF/DR0 IF/DR1 Results

1 JMP any Cancel IF/DR1(only if JMP is valid and taken)

Number DR/E0 or 1 IF/DR0 or 1 Results

2 JMP any Cancel IF/DR(only if JMP is valid and taken)

Stall and Cancel Operations

What will happen when stall?
Stall IFDR0:

Nullify current instructions in IR0 and IR1
PC <= PC

IR0 IR1

DRE0 DRE1

‘0’ ‘0’

22

Stall and Cancel Operations

What will happen when stall?
Stall IFDR1:

Nullify instruction in IR1
IR0new <= IR1old, IR1new <= next instruction
PC <= PC+4

IR0 IR1

DRE0 DRE1

‘1’ ‘0’

THE ASSEMBLER

Generates the Binary Instruction
Sequence for the Instruction Memory
Easily Integrated with Testbench
Flexible Assembly File Format >>
Informative Error Diagnostics >>

23

THE ASSEMBLER

File Format:

#OUR ASSEMBLY FILE:

P7:cmp.leu R1, R11, P1,P0
P6 : loadi.hi R6, -9

p0: PADD.8.u r5 , r3, r2 #comment
P2:jmp.link -1

Can have comment lines
Can have blank lines
Can have spaces between operands
Can have indentation and spaces between predicate fields
Case insensitive and can have comments after instructions

THE ASSEMBLER

Error Diagnostics:
Erroneous Instruction: Generated Error Message by Assembler:

PADD.8.u r5 , r3, r2 ***ERROR***: in line -> 6
"Invalid instruction[non numeric Predicate id] -->PADD.8.u r5 , r3, r2

P3:padd.5.u r5, r4, r3 ***ERROR***: in line -> 7
"Invalid instruction [wrong subword size field for ...] -->padd.5.u r5, r4, r3"

P8:psub.4.s r5, r4, r3 ***ERROR***: in line -> 7
"Invalid instruction[non numeric Predicate id] -->P8:psub.4.s r5, r4, r3"

P4:psub.4. r5, r4, r3 ***ERROR***: in line -> 11
"Invalid instruction [expected u or s for psub] -->P4:psub.4. r5, r4, r3"

P6 : loadi.hi 6, -9 ***ERROR***: in line -> 5
"Invalid instruction[expected Rd register field] -->P6 : loadi.hi 6, -9"

24

THE ASSEMBLER
See web page for simulator output and
generated binary file
Yet some instructions are not implemented
Bugs – Deficiencies:

Cannot Recognize tab separators
Immediate range: -99999 – 99999
P0:jmp.reg R18, 0

To fit Type-1 instruction Format

FINAL TESTBENCH

Initialize the Instruction Memory
Assembler Binary File
Read Binary File

Or Directly Assembler ICache

Reset The Pipe Registers
Generate Clock
PLX Processor works autonomously

