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ABSTRACT

Resource provisioning in compute clouds often requires an
estimate of the capacity needs of Virtual Machines (VMs).
The estimated VM size is the basis for allocating resources
commensurate with demand. In contrast to the traditional
practice of estimating the size of VMs individually, we pro-
pose a joint-VM provisioning approach in which multiple
VMs are consolidated and provisioned together, based on
an estimate of their aggregate capacity needs. This new ap-
proach exploits statistical multiplexing among the workload
patterns of multiple VMs, i.e., the peaks and valleys in one
workload pattern do not necessarily coincide with the others.
Thus, the unused resources of a low utilized VM can be bor-
rowed by the other co-located VMs with high utilization.
Compared to individual-VM based provisioning, joint-VM
provisioning could lead to much higher resource utilization.
This paper presents three design modules to enable such a
concept in practice. Specifically, a performance constraint
describing the capacity need of a VM for achieving a certain
level of application performance; an algorithm for estimat-
ing the aggregate size of multiplexed VMs; a VM selection
algorithm that seeks to find those VM combinations with
complementary workload patterns. We showcase that the
proposed three modules can be seamlessly plugged into ap-
plications such as resource provisioning, and providing re-
source guarantees for VMs. The proposed method and ap-
plications are evaluated by performance data collected from
about 16 thousand VMs in commercial data centers. The
results demonstrate more than 45% improvements in terms
of the overall resource utilization.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Modeling techniques

General Terms: Algorithms, Management, Measurement

Keywords: Cloud computing, Provisioning, Virtualization

1. INTRODUCTION
In modern virtualization based compute clouds, applica-

tions share the underlying hardware by running in isolated
Virtual Machines (VMs). Each VM, during its initial cre-
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ation, is configured with a certain amount of computing re-
sources (such as CPU, memory and I/O). A key factor for
achieving economies of scale in a compute cloud is resource
provisioning, which refers to allocating resources to VMs
to match their workload. Typically, efficient provisioning is
achieved by two operations: (1) static resource provision-
ing. VMs are created with specified size and then consoli-
dated onto a set of physical servers. The VM capacity does
not change; and (2) dynamic resource provisioning [20, 18,
15]. VM capacity is dynamically adjusted to match work-
load fluctuations. Static provisioning often applies to the
initial stage of capacity planning. It is usually conducted in
offline and occurs on monthly or seasonal timescales [7, 32].
Such provisioning functionality has been included in many
commercial cloud management softwares [27, 28, 11, 19, 16].

In both static and dynamic provisioning, VM sizing is per-
haps the most vital step. VM sizing refers to the estimation
of the amount of resources that should be allocated to a VM.
The objective of VM sizing is to ensure that VM capacity is
commensurate with the workload. While over-provisioning
wastes costly resources, under-provisioning degrades appli-
cation performance and may lose customers. Traditionally,
VM sizing is done on a VM-by-VM basis, i.e., each VM
has an estimated size based on its workload pattern. In a
significant departure from such an individual-VM based ap-
proach, we advocate a joint-VM provisioning approach in
which multiple VMs are consolidated and provisioned based
on an estimate of their aggregate capacity needs. Conceptu-
ally, joint-VM provisioning exploits statistical multiplexing
among the dynamic VM demand characteristics, i.e., the
peaks and valleys in one VM’s demand do not necessarily
coincide with the other VMs. The unused resources of a low
utilized VM, can then be directed to the other co-located
VMs at their peak utilization. Thus, VM multiplexing po-
tentially leads to significant capacity saving compared to
individual-VM based provisioning. The savings achieved by
multiplexing are realized by packing VMs more densely into
hardware resources without sacrificing application perfor-
mance commitment. While this increases the overall con-
solidation ratio, the additional virtualization overheads as-
sociated with scheduling somewhat higher number of VMs
is generally minimal as long as the VM footprints fit in the
provisioned capacity [31]. The savings with our joint-sizing
approach are up to 40% according to our analysis on the
utilization data from a production data center.

The above seemingly simple concept poses several research
challenges. For example, given a set of VMs to be consoli-
dated and provisioned, how to estimate their total capacity



needs that neither break application performance commit-
ments nor waste resources? Since any combination of VMs
can be potentially provisioned together, how to find combi-
nations that saves the most capacity? What are the poten-
tial scenarios for applying this technique in compute clouds?
In this work, we address these questions in detail. Specifi-
cally, the primary contributions of this work are:

• We introduce a Service-level-agreement (SLA) model
that map application performance requirements to re-
source demand requirement. We propose a system-
atic method to estimate the total amount of capacity
for provisioning multiplexed VMs. The estimated ag-
gregate capacity ensures that the SLAs for individual
VMs are still preserved.

• We present a VM selection algorithm that seeks to find
those VMs with the most compatible demand patterns.
The identified VM combinations lead to high capac-
ity savings if they are multiplexed and provisioned to-
gether.

• We illustrate effective and feasible applications of the
proposed technique for capacity planning and for pro-
viding resource guarantees via VM reservations. Both
applications can be easily employed in existing cloud
and virtualization management infrastructures with min-
imal intrusion and substantial benefits in return.

We conduct simulations to evaluate the proposed methods
by using a massive dataset collected from commercial data
centers. The dataset includes 159-thousand VMs and spans
three months. In the capacity planning application, joint
provisioning uses 45% less physical machines for hosting the
same set of VMs. In the VM reservation application, joint
provisioning improves the ratio of admitted VMs by 16% on
average, and up to 75% with more stringent SLA require-
ments. These results demonstrate the significant potential
by leveraging VM multiplexing.

The rest of the paper is organized as follows. Section 2,
surveys prior work related to resource provisioning and VM
multiplexing. Section 3, motivates the use of VM multi-
plexing to improve resource utilization efficiency. It uses
data from commercial global data centers to demonstrate
the potential capacity gains with joint-VM based provision-
ing. Section 4, provides an overview of our methodology.
Section 5, describes the underlying SLA model for resource
provisioning. Section 6 describes the algorithm for joint-VM
sizing. Section 7 presents a method for selecting compatible
VMs for multiplexing. Section 8 discusses the use cases for
VM multiplexing and provides the experimental evaluations.
Last, Section 9 offers our conclusions.

2. RELATED WORK
As resource provisioning is a common management task

in modern virtualization-based compute clouds, it has be-
come an important ingredient of commercial cloud manage-
ment products including VMware Capacity Planner [27] and
CapacityIQ [28], IBM WebSphere CloudBurst [11], Novell
PlateSpin Recon [19] and Lanamark Suite [16]. Meanwhile,
the topic has been widely studied in the research commu-
nity. Some existing work apply application/VM profiling
and statistical modeling for long-term resource provisioning
[1, 7, 8, 18]. Other work focus on short-term, dynamic pro-
visioning techniques [20, 18, 15]. While all these products
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Figure 1: Individual VM capacity requirements.
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Figure 2: Aggregate capacity requirement for mul-

tiplexed VMs.

and research work provide valid solutions, they stand on a
VM-by-VM basis, that is, they consider each VM’s resource
need separately. Such an approach provides a reasonably ef-
fective solution to the provisioning problem, yet it generally
leads to low resource utilization [13, 22, 25]. In contrast,
our work exploit the workload multiplexing among multi-
ple VMs. We demonstrate that how multiple VMs’ capacity
requirement can be satisfied collectively with a much lower
total resource consumption.

A few prior arts consider concepts similar to VM multi-
plexing for improving resource utilization. Specifically, Son-
nek and Chandra [24] identify VMs that are most suitable for
being consolidated on a single host. They propose to mul-
tiplex VMs based on their CPU and I/O boundedness, and
to co-locate VMs with higher potential of memory sharing.
Wood et al. [33] present a method for co-locating VMs with
similar memory content on the same hosts for higher mem-
ory sharing. Gupta et al. [10] further progress this mem-
ory sharing method by limiting memory sharing within page
boundaries. Govindan et al. [9] propose to consolidate VMs
based on their communication patterns. Govindan et al. [5,
8] use statistical multiplexing of applications to identify ap-
plications that fit into given power budgets. In comparison
to all these studies, our work also apply VM multiplexing
to consolidate VMs more densely on hosts. Nevertheless,
our work provide a general performance model and enabling
techniques that ensure the application performance is not
degraded by VM multiplexing.

3. MOTIVATION
Our proposed joint-VM provisioning approach stems from
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Figure 3: Potential capacity savings for VM provi-

sioning using VM multiplexing.

an observation on the VM resource demand in actual data
centers. It is well known that the applications enclosed
by VMs - and thus the VMs themselves - exhibit time-
varying resource demand patterns with bursts of high de-
mand periods, intermixed with low-utilization regions [3, 23,
26]. Furthermore, our measurement on a large set of VMs
shows that many VMs, even in the same data center, exhibit
demand patterns with different, unaligned distributions of
these peaks and valleys. Therefore, while a capacity planner
that operates over singleton VMs is bound by the peaks of
each individual VM, a joint-VM approach can potentially
exploit the multiplexing among the demand patterns of mul-
tiple VMs to reach an aggregated capacity measure that is
only bound by the aggregate peak behavior.

Figures 1 and 2 illustrate an example with three VMs from
a production data center. Figure 1 depicts the monitored
CPU demand of each VM over a 24-hour period. Each VM
exhibits a time-varying demand pattern with interspersed
peaks. However, the peaks for each VM occur at differ-
ent time. The figure also depicts a simple capacity bound
required by each VM that is based on conservatively satis-
fying each instantaneous peak, i.e., the capacity required for
each VM is set as the maximum demand ever observed in
the history time period. Based on this capacity model, the
total capacity required for the three VMs is 104%.

In contrast, Figure 2 depicts the multiplexed behavior of
the three VMs when they are jointly provisioned. The fig-
ure shows the aggregated CPU demand. Here we see the
increased number of peaks in the aggregated demand. The
total capacity required to satisfy the demand of all the three
VMs is only 67%, a dramatic improvement compared to the
separate provisioning scenario.

To assess the potential capacity savings with multiplexing
in VM capacity planning at the enterprise scale, we extend
the above comparison to a massive dataset collected from a
set of commercial data centers. The dataset involves 15,897
VMs that reside on 1325 physical hosts, managed by tens of
regional hosting operators and used by hundreds of enter-
prise customers. The dataset includes configurations of each
host, and the CPU and memory utilization ratio of each VM
for up to three months. All the evaluation in the rest of this
work is based on this dataset.

In this assessment, we first identify that 94% of the 1325
hosts contains more than one VM. For each of such hosts,
similar to the previous example, we compare the sum of
VM capacity needs between using the separate and the joint
provisioning. Both the CPU and memory resources are con-
sidered in this comparison. In either provisioning method,
the peak demand is still used to bound the capacity. Fig-
ure 3 plots the histogram of the capacity savings achieved
by joint provisioning for all those hosts with more than one
VM. The histogram shows significant savings by the joint

provisioning. Overall, the average CPU (or memory) capac-
ity saving over individual VM provisioning is around 40%,
which clearly demonstrates the compelling potential benefits
of VM multiplexing.

4. METHODOLOGY OVERVIEW
Our VM multiplexing and joint-VM provisioning approach

is composed of three function modules, which collectively
capture the necessary steps for defining the multiplexed VMs,
and their individual and joint capacity requirements. These
three modules include: (1) a general SLA imposed on VM
capacity; (2) a joint-VM sizing algorithm that calculates
the total capacity needs for multiplexed VMs; and (3) a VM
selection algorithm that identifies compatible VM combina-
tions for being consolidated and provisioned jointly. Below,
we describe how these three modules cooperate within a gen-
eral resource provisioning framework.

Given a set of VMs, the VM selection algorithm identifies
VM combinations that achieve high capacity savings if pro-
visioned together. The selection criterion is how complemen-
tary the VM demand patterns are. Highly complementary
VMs will be grouped together by the selection algorithm.
Eventually the selection algorithm partitions VMs into mul-
tiple sets. Those VMs in the same set will be consolidated
onto the same physical server and thus can be considered as
a super VM. To provision such a super VM, we first need
to calculate its aggregate capacity need. To this end, we
introduce a SLA model and a joint-VM sizing algorithm.
The SLA model defines a relation between the VM capac-
ity and the performance level of the applications running on
the VM. Moreover, the SLA model makes it convenient to
derive a constraint on the super VM capacity simply based
on specified SLA for individual VM. Based on the derived
constraint and the aggregate workload of the super VM, the
joint-VM sizing algorithm proceeds to calculate the super
VM’s capacity need, which is the minimum amount of re-
sources that should be allocated to the super VM without
degrading individual VM’s SLA.

We apply such a VM multiplexing approach and demon-
strate its benefits in two cloud management operations. The
first application is VM consolidation. We identify compati-
ble VMs, provision them jointly in a compute cloud and sig-
nificantly reduce hardware requirement. Second, we define a
joint reservation model to provide VM-level resource guar-
antees in a virtualized environment. By identifying com-
patible VMs and their SLA, we are able to derive a joint
reservation level based on individual VM reservations. We
group compatible VMs in resource pools, and enforce joint
reservations at the resource pool level. All of these enable
dramatically improved VM consolidation ratio in the cloud.

5. VM SLA MODEL
In this section, we describe a SLA model that is used

as the basis for determining VM capacity. We consider a
discrete-time scenario in which time is slotted into intervals
with equal length. We first define the SLA model for a single
VM.

Definition 1 (Single-VM SLA model). Suppose VM
i is allocated a fixed capacity within a time frame [1, L]. Let
xi(t) denote VM i’s workload volume in time slot t. A con-



straint on the capacity of VM i is expressed as

1

ki

ki−1
X

s=0

I(

P(s+1)ki

t=ski+1 xi(t)

Ti

exceed capacity) ≤ βi (1)

where Ti ∈ {1, 2, 4, . . .}, ki =
L

Ti

is an integer, 0 ≤ βi ≤ 1

In the above inequality, I is defined as

I(y) =

(

1, if y is true

0, if y is false

In Inequality (1),

P(s+1)ki

t=ski+1
xi(t)

Ti
is the average workload

in a time interval of length Ti. The above SLA constraint
is interpreted as following: if the entire time frame is di-
vided into multiple intervals with equal length Ti, the pro-
portion of the intervals in which the cumulative workload
exceeds the VM capacity must be no more than a threshold
βi. The two parameters Ti and βi are specified according
to the performance requirement of the running applications.
Ti reflects how much latency on average a request from the
applications is expected to tolerate. The value of Ti should
be close to the normal response time experienced by the ap-
plications. For a reason explained later, Ti is only allowed
to take a value as a power of two. βi is a threshold limiting
the chance of capacity violation. The above SLA model is
quite general and can be applied to match various applica-
tion performance requirements. For example, time-sensitive
applications such as multimedia often require an immediate
fulfillment of their workload demand. A SLA model with
smaller Ti and βi may fit well. On the other hand, time-
elastic, long-running applications such as disk backup are
usually tolerable of infrequent short-term capacity insuffi-
ciency. Accordingly a SLA model with large Ti and βi is
more suitable. It is worth mentioning that when both Ti

and βi are close to zero, this SLA model is equivalent to the
peak-load based sizing strategy mentioned in Section 3.

The proposed SLA model is used to derive the capacity
needed for provisioning VMs. Obviously, once Ti and βi are
given, the single-VM sizing problem is equivalent to finding
the minimum capacity that satisfies Inequality (1). Now we
further extend the SLA model to the joint-VM case, in which
multiple VMs are consolidated and provisioned together.

Definition 2 (Joint-VM SLA model). Suppose n VMs
are provisioned jointly and allocated a fixed capacity within
a time frame [1, L]. Given n parameter tuples (Ti, βi) (Ti ∈
{1, 2, 4, . . .}, 0 ≤ βi ≤ 1), a constraint imposed on the ca-
pacity of the n VMs is following

1

k

k−1
X

s=0

I(

P(s+1)k
t=sk+1

Pn

i=1 xi(t)

T
exceed capacity) ≤ β (2)

where T = min
i

Ti, k =
L

T
, k is an integer, β = min

i
Ti min

i

βi

Ti

Compared to Inequality (1), the only difference in (2) is
to replace individual VMs’ workload by the sum of all VMs’
workload. We can prove the following theorem

Theorem 1. If n VMs satisfy the joint-VM SLA con-
straint in Inequality (2), each VM must also satisfy the single-
VM SLA constraint in Inequality (1) with parameters Ti and
βi.

Proof: We only need to show that if Inequality (2) holds,
then Inequality (1) holds for any VM i. Because every Ti

is a power of 2 and T is the minimum among all Ti, a time
interval [1, Ti] can be divided into Ti

T
shorter intervals. If

the average of
P

i
xi(t) in the period [1, Ti] exceeds capac-

ity, there must be at least one shorter interval in which the
average exceeds capacity as well. This fact leads to

I(

PTi

t=1

P

i
xi(t)

Ti

e.c.) ≤

Ti

T
−1

X

s=0

I(

P(s+1)T
t=sT+1

P

i
xi(t)

T
e.c.)

where e.c. is an abbreviation of ”exceed capacity”.
The above inequality is only for the interval [1, Ti]. Sim-

ilar inequalities hold for the other intervals with length Ti,
e.g., [Ti + 1, 2Ti], [2Ti + 1, 3Ti], . . .. By summing up all such
inequalities on their left and right sides respectively, we have

L
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−1

X
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I(

P(s+1)Ti

t=sTi+1
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i
xi(t)

Ti

e.c.) ≤
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T
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I(

P(s+1)T
t=sT+1

P

i
xi(t)

T
e.c.)

Because Inequality (2) holds, the right side of the above
inequality is no more than β L

T
= β L

mini Ti
, so

L

Ti
−1

X

s=0

I(

P(s+1)Ti

t=sTi+1

P

i
xi(t)

Ti

e.c.) ≤ β
L

mini Ti

Considering β = mini Ti mini
βi

Ti
, we further have

L

Ti
−1

X

s=0

I(

P(s+1)Ti

t=sTi+1

P

i
xi(t)

Ti

e.c.) ≤ L min
i

βi

Ti

≤ L
βi

Ti

which becomes Inequality (1) and proves that VM i complies
with the single-VM SLA constraint with parameters Ti and
βi. �

The insight behind the above proof is that the SLA con-
straint in the joint case is taking the most stringent one from
all individual VM’s constraint. Thus, when a joint-VM size
ensures that the joint-VM constraint is satisfied, it is guar-
anteed that individual VM’s SLA must be satisfied. This
important property becomes the foundation for the joint-
VM sizing algorithm presented in the next section. Also, it
is worth mentioning that when all VMs have identical Ti and
identical βi, there will be T = Ti and β = βi in Definition
2, i.e., since every VM has the same SLA , the SLA of the
joint-VM will take the same as well.

6. JOINT-VM SIZING
This section describes how to estimate the capacity (hence

after referred to as c) needed for provisioning n VMs. In a
nutshell, this method applies both timeseries forecasting and
statistical modeling to infer future workload patterns, then
it finds c by solving the SLA constraint in (2). The inputs to
this method are the historitic workload timeseries and the
parameters in the SLA model for each VM. The output is the
estimated c. Specifically, this method first uses Definition
2 to determine T and β that should be used in the joint-
VM SLA constraint. The total workload for all VMs is then
computed. The total workload is further projected to the
future by standard timeseries forecasting techniques. Since
any forecasting technique is subject to error, the forecasting
error is modeled by statistical distributions. The forecasted



workload plus the forecast error model constitutes a com-
plete description of the future workload, which is further
used to compute c based on the joint-VM SLA constraint.
The flowchart of this method is provided in Figure 4.

The remainder of this section addresses three major steps
in the above procedure: Section 6.1 discusses workload fore-
casting (lines 2-6 in Figure 4) . Section 6.2 presents two
approaches to deriving the forecast error distribution (lines
7-11). The final step, computing c (lines 12-14), is presented
in Section 6.3.

Input: n VM workload timeseries xi(t)
n VM constraint parameters (Ti,βi)

1. Derive constraint parameters T and β by Defintion 2
2. For each VM i

3. Decompose xi(t) 7−→ xi(t) = x̂i(t) + x̃i(t)
x̂i(t): trend and seasonal components
x̃i(t): irregular fluctuations

4. x̂(t) =
P

i
x̂i(t), x̃(t) =

P

i
x̃i(t)

5. Forecast x̂(t) in future time frame [1, L]
6. Forecast x̃(t) in future time frame [1, L]
7. x̃e(T ): forecasting error accumulated in T timeslots
8. If forecast method has explicit error model
9. Compute probability density f(x̃e(T ))
10. else
11. Infer f(x̃e(T )) by past forecasting errors
12. For every [1 + sT, (s + 1)T ](s = 0, 1, . . .) in [1, L]
13. Compute minimum c(s) s.t.

Prob{
P(s+1)T

t=1+sT (x̃(t) + x̂(t)) + x̃e(T )) > c(τ)T} ≤ β

14. Find c = maxs c(s)

Figure 4: Flowchart for Joint-VM sizing

6.1 Workload forecasting
Prior to forecasting, the workload for each VM is decou-

pled into regular and irregular fluctuating components. The
regular workload refers to those deterministic patterns such
as trends, cycles and seasonality. Various timeseries tech-
niques [14] can be applied to extract such patterns. The
irregular fluctuating workload is the residual after removing
the regular ones. For ease of illustration, let xi(t) denote the
workload of VM i (i = 1, 2, . . . , n), x̂i(t) and x̃i(t) denote
the regular and fluctuating workload respectively. The next
step is to forecast the aggregate regular workload

P

i
x̂i(t)

and the aggregate fluctuating workload
P

i
x̃i(t). These two

types of workload are forecasted separately. Forecasting
P

i
x̂i(t) is done by simply assuming the regular patterns

will preserve in the future, e.g., a steadily increasing trend
keeps increasing at the same rate; a daily seasonality con-
tinues to hold. On the other hand, forecasting

P

i
x̃i(t) is

performed by a timeseries forecasting technique such as lin-
ear regression, ARMA and neural networks. Because our
method is compatible with any forecasting technique and
there is no single technique widely agreed to be the best
one, we take a best practice approach in which we keep com-
paring the forecasting accuracy of those popular predictors
based on historic workload patterns and choosing the better
one periodically.

An alternative strategy is to directly apply trend, season-
ality detection and forecasting to

P

i
xi(t) without decom-

posing xi(t). This brings a potential drawback that a regular
pattern in xi(t) could become difficult to extract after mul-
tiple xi(t) are aggregated. For example, xi(t) has a regular
pattern but the average workload rate is small, xj(t) con-
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Figure 5: An example of joint-VM sizing by using

two VMs’ CPU utilizations

tains only fluctuating workload with much higher average
rate. After aggregating x1(t) and x2(t), the regular pattern
in x1(t) could easily be unrecognizable.

Figure 5(a) shows two VMs’ CPU workload in a 100-day
period (hereafter referred to as VM 1 and 2). Figure 5(b)
shows the regular and fluctuating patterns extracted from
VM 1’s workload. Clearly VM 1’s workload has daily and
weekly seasonality. Compared with the original workload of
VM 1 (top of Figure 5(a)), the fluctuating workload (bottom
of Figure 5(b)) shows less variability and easier to forecast.

6.2 Modeling forecasting error
The above forecasting process decomposes

P

i
xi(t), the

aggregate workload at a future time t, into

n
X

i=1

xi(t) =
n

X

i

x̂i(t) +
n

X

i

x̃i(t) + e(t) (3)

where e(t) is the forecasting error (or uncertainty) at t. Be-
cause the SLA constraint (see Inequality 2) is concerned
about the sum of workload accumulated in a time interval
[τ, τ + T ], we need to compute the following

τ+T
X

t=τ

n
X

i=1

xi(t) =

τ+T
X

t=τ

n
X

i=1

x̂i(t) +

τ+T
X

t=τ

n
X

i=1

x̃i(t) +

τ+T
X

t=τ

e(t) (4)

where the third term on the right side is the forecast error
accumulated over the time interval. In general, forecast error
is assumed to be a stationary stochastic process. Thus we
can use x̃e(T ) to denote the accumulated forecast error in
any time interval of length T , i.e.,

x̃e(T ) =

τ+T
X

t=τ

e(t) (∀τ) (5)



The next step is to derive the probability density func-
tion for x̃e(T ). Depending on whether the used forecasting
method provides an explicit model for e(t), we have the fol-
lowing two approaches.

6.2.1 With explicit forecast error model

Some forecasting algorithms such as ARMA provide an
explicit model for the forecasting error e. Their common
approach is to model e(t) as

e(t) = ǫ(t) − θ1ǫ(t − 1) − θ2ǫ(t − 2) − . . . − θmǫ(t − m) (6)

where ǫ(t) is normal white noise with variance σ2. Combin-
ing (6) with (5), x̃e(T ) becomes

x̃e(T ) =

τ+T−m
X

t=τ−m

αtǫ(t) (7)

where αt is a linear combination of θi (i ∈ [1, . . . , m]) and
can be easily computed from (6).

Because ǫ(t) is normal white noise, x̃e(T ) is the sum of
a set of normal random variables. Thus x̃e(T ) is a normal

random variable with mean 0 and variance
Pτ+T−m

t=τ−m
α2

t σ
2.

Back to the example in Figure 5(a) and 5(b), we use ARMA(1,1)
to forecast x̃(t). The top of Figure 5(c) is the histogram for
all x̃e(10) samples, which are obtained by subtracting fore-
casted values from the actual values in the model training
phase. The bottom of Figure 5(c) is the computed normal
distribution which fits the histogram well.

6.2.2 Without explicit forecast error model

For many forecasting methods such as neural network
based algorithms, they do not provide an explicit model
for the forecast error. Our strategy is to collect many re-
alizations of x̃e(T ) and to use them to obtain an empirical
density function. Specifically, we apply such a forecasting
method to historical workload and compute forecasting er-
ror at every past time point. The forecasting error summed
over any interval of length T constitutes a realization for
x̃e(T ). Next, we apply the classical Kernel Density Estima-
tion (KDE) technique [21] to construct an empirical density
function by using all the collected realizations for x̃e(T ).
KDE is chosen because it is a non-parametric method so
there is no need to make any assumption on the distribu-
tion of x̃e(T ). The KDE implementation used in this work
is from Ihler and Mandel’s Toolbox [12]. To illustrate this
procedure by an example, we apply the Feed-forward Neural
Network (FNN) algorithm [17] to forecast x̃(t) which is ob-
tained from the aforementioned VM 1 and 2. While the top
of Figure 5(d) is the histogram of collected realizations for
x̃e(T ), the bottom shows the corresponding density function
estimated by KDE. Again, the estimated density function
fits the histogram well.

6.3 Computing joint size c

The final step is to compute c based on Inequality (2). For
this purpose, we need to compute the aggregate workload in
a future time interval with length T . Let [τ, τ + T ] denote
such an interval, according to (4), the aggregate workload
in this interval consists of three components, among which
the last one, x̃e(T ), is probabilistic. Thus, Inequality (2) is
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equivalent to

c ≥

τ+T
X

t=τ

n
X

i=1

x̂i(t) +

τ+T
X

t=τ

n
X

i=1

x̃i(t) + φ
−1(1 − β) (8)

where Φ−1 is the quantile-function for x̃e(T ). Here a quantile-
function is defined as the inverse of the CDF. For the right
side of (8), the first two terms are known after the work-
load forecasting phase, and the last term is also known after
computing the density function for x̃e(T ). Thus, for every
future time interval of length T , we use (8) to determine a
lower bound for c. In each future time interval of length T ,
we obtain such a lower bound. By iterating all such time in-
tervals that are of interests, we find out the maximum lower
bounds and use it as the estimated c.

7. VM SELECTION FOR JOINT SIZING
The key advantage of joint sizing stems from the fact that

the workload peaks and troughs of different VMs do not ex-
hibit identical temporal patterns. Obviously an important
factor contributing to the realized capacity savings with VM
multiplexing is the way VMs are combined: a method that
combines VMs with similar temporal peak and trough pat-
terns cannot achieve savings compared to a method that
identifies and favors VMs with complementary temporal be-
havior. Therefore, in this section we describe a method
to identify VMs with complementary demand patterns. As
a relevant problem, virtualized clusters often employ addi-
tional resource allocation constraints such as affinity and
anti-affinity rules that describe which entities need to be or
cannot be placed together. Their techniques can also be
incorporated into our VM selection process.

Our VM selection method uses the correlations among
VMs as the indicator of their compatibility. For a given
set of VMs, we first build correlation matrix C based on
the historical or forecasted demand behavior of each VM.
Such a correlation matrix is commonly employed in similar-
ity analysis techniques such as principle component analy-
sis and factor analysis [6]. Each entry C(i, j) is the Pear-
son’s correlation coefficient between the workload timeseries
of the two VMs i and j. We consider VM pairs with strong
negative correlations as good candidates for multiplexing
because a negative correlation indicates that these VMs’
demand behavior changes in opposite directions. Figure
6 demonstrates the upper-diagonal correlation matrix for
an example actual cluster of 87 VMs. Here, the correla-
tion matrix is shown as an intensity plot with higher (pos-
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Figure 7: Demand patterns two VM pairs.

itive)correlations shown brighter and lower (negative) cor-
relations shown darker. Therefore, good candidate VMs for
joint sizing lie in the intersections of dark points. Our VM
selection method simply finds the matrix entries C(k, l) with
the lowest correlation coefficients and multiplexes the two
VMs k and l. Once the two VMs are chosen, the kth and lth

rows and columns of the matrix are invalidated so that the
next set of compatible VMs can be identified.

Figure 7 depicts two sets of VMs, selected from the virtu-
alized cluster used for the displayed correlation matrix. Fig-
ure 7(a) shows two VMs with a strong negative correlation,
while Figure 7(b) plots two VMs with a very high positive
correlation entry. The two figures distinctly show the con-
trasting characteristics of the two sets of VMs. While the
first set of VMs complement each other very well with their
peaks temporally distributed in a non-overlapping manner,
the latter two VMs—with high positive correlation—have
highly overlapping demand characteristics with strongly aligned
peaks. Therefore, the joint capacity requirement of the lat-
ter set of VMs is close to the sum of their individual ca-
pacity requirements, while significant capacity savings are
realizable by joining the first set of VMs. These show that
the correlation-based approach provides a reasonably good
method for VM selection.

We also evaluate the quality of our method against a ran-
dom selection approach, where VMs are randomly picked
for joint sizing. For this evaluation, Figure 8 demonstrates
the achievable capacity savings - over individual VM sizing
- with both selection methods for 441 VMs. We assume or-
acle knowledge of future VM demand, thus evaluating the
selection method is independent from the underlying fore-
casting technique. The capacity requirement for each VM
is considered as the peak demand. The joint capacity is
defined in a similarly conservative manner, i.e., it equals
the peak demand of all multiplexed VMs. Figure 8 depicts
how the total required capacity decreases as we multiplex
VMs. Both random and correlation-based selection schemes
achieve significant capacity reduction, which demonstrates
the strong potential of our joint sizing approach. However,
the correlation-based approach performs distinctly better
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Figure 8: Capacity improvement with VM multi-

plexing and correlation-based VM selection.

than the random selection, thus corroborating the benefit
of our VM selection technique.

While not the scope of our work, there are several avenues
of improvement for our VM selection technique. First, as
the data center sizes grow, the scalability of the correlation
matrix becomes an issue. Here the simplest workaround
is to consider a hierarchy of VM clusters that are evaluated
disjointly. Second, so far we only identify pairs of compatible
VMs. In principle, we can extend this to more than two VMs
by using an approach similar to factor analysis, in which
VMs with similar correlation characteristics are clustered
into sets of arbitrary sizes.

8. EVALUATION OF VM MULTIPLEXING
As discussed in the previous sections, the proposed SLA

model, joint-VM sizing and VM selection constitute the three
building blocks for VM multiplexing. These building blocks
can be directly plugged into existing resource provisioning
applications. In this section, we demonstrate and evaluate
two use cases for VM multiplexing with two common cloud
management applications, and demonstrate its substantial
benefits with dramatic improvements in resource use effi-
ciency in each use case.

8.1 VM consolidation
VM consolidation is performed when a VM controller needs

to create and deploy a set of VMs on a set of physical hosts.
The goal of VM consolidation is to determine a mapping
of VMs to physical hosts such that the minimum number
of hosts are used. Existing VM consolidation schemes con-
sist of two steps: estimating the future size for each VM,
and placing VMs on physical hosts. The first step, estimat-
ing VM size, is usually solved by first forecasting the future
workload, then finding a capacity size that can sufficiently
cover the forecasted workload. The second step, VM place-
ment, usually requires solving a bin packing type of problem.
Specifically, since each VM carries a size and each physical
host has fixed capacity, the VM placement problem is equiv-
alent to packing items (VMs) into the smallest number of
bins (hosts) without violating the size limit on each bin. In
practice, VM placement is tackled by either heuristics or
solving an integer programming problem [1].

By exploiting VM multiplexing, it is possible to achieve
even more compact consolidation. The only necessary change
is to replace the first step in the above procedure with the
proposed three building blocks. Briefly speaking, the VM
controller first applies the proposed SLA model to describe
the performance requirement for each VM. It then run the
VM selection algorithm to partition VMs into VM groups.
For each VM group, the joint-VM sizing algorithm is em-
ployed to determine the capacity being allocated.

We conduct an experiment to compare capacity savings



0 0.01 0.02 0.05
0

50

100

150

β

U
s
e

d
 p

h
y
s
ic

a
l 
h

o
s
ts

 

 

Individual + oracle

Individual + forecast

joint + oracle

joint + forecast

(a) T = 1, β varies

1 2 5 10
0

50

100

150

T

U
s
e

d
 p

h
y
s
ic

a
l 
h

o
s
ts

 

 

Individual + oracle

Individual + forecast

joint + oracle

joint + forecast

(b) β = 0.01, T varies

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Actual β

C
D

F

 

 

T=2,β = 0
T=2,β = 0.01
T=2,β = 0.02
T=2,β = 0.05

(c) CDF for actual β with forecasting-based joint sizing

Figure 9: VM consolidation by different schemes

between using and without using VM multiplexing. From
the aforementioned dataset, we extract the server informa-
tion for one regional data center, which contains 266 phys-
ical hosts and 1418 VMs. The purpose of this experiment
is to try various VM sizing schemes by consolidating these
1418 VMs into the 266 hosts. The VM placement method
we used is FFD (First-Fit Decreasing) [1], a popular ap-
proximation algorithm for solving bin packing problem. We
consider a homogeneous scenario in which all VMs have the
same SLA constraint parameters T and β. Therefore, these
two parameters are also taken in the joint SLA model. We
compare four VM sizing schemes, coming from two choices
that whether individual or joint sizing is used, and whether
an oracle or an actual forecasting is used. The oracle-based
joint sizing schemes represent the potential capacity savings
with perfect VM demand knowledge. The measurement pe-
riod for our data lasts for 3 months. We always use the first
half for training forecasting model, and the second half for
conducting forecasting, sizing and packing. We vary T and
β and compute the number of physical hosts needed to ac-
commodate the 1418 VMs. Figure 9(a) and 9(b) shows the
number of required hosts for several settings of T and β.

The two figures show that the extra capacity savings by
joint-VM provisioning varies at different combinations of T

and β. The largest capacity saving occurs when T = 1
and β = 0, which corresponds to the peak-load based sizing
strategy mentioned in Section 3. In this case, while individ-
ual sizing with forecasting uses 117 hosts, joint sizing with
forecasting only uses 67 hosts. This is a 45.3% extra saving.
A clear trend is that when β increases, the gain margin of
joint sizing shrinks. An intuitive explanation is that when
β is larger, more capacity violation is allowed, and the com-
puted VM size tends to be more affected by the long-term
workload mean instead of spikes. Therefore, the benefit of
multiplexing decreases.

Because joint sizing relies on forecasting algorithms to in-
fer the future workload, the forecasted capacity also incurs

some errors. Thus, when the estimated joint size is enforced
in practice, the original SLA might be violated. To examine
this aspect, we measure the actual β defined as the percent-
age of intervals with capacity violations when the estimated
joint size is enforced. Essentially, the actual β is calculated
from the left side of Inequality (2). If the actual β is signifi-
cantly greater than the required β, the joint sizing becomes
less usable. We calculate the actual β for all the 709 VM
pairs and plot the CDF in Figure 9(c) for T = 2 and various
β. When β varies from 0.01 to 0.05, the figure shows that
88%-96% of VM pairs have their actual β less than the given
β. Across all the VMs, more than 90% of the VM pairs have
the actual β within 0.02 of their performance measure. The
figure also shows that as β increases, the actual β tends to
be higher. This is explained by the fact that for smaller β,
the joint sizing is more conservative and the estimated size
is higher, thus the negative impact of potential forecasting
error is better covered.

8.2 Providing resource guarantees for VMs
Current cloud management and virtualization tools pro-

vide mechanisms that expose explicit controls on the dis-
tribution of resources to VMs. These control methods in-
clude providing resource guarantees for VMs in the form of
reservations or mins, enforcing resource limits with limits or
maximums and manipulating dynamic resource scheduling
priorities with shares [2, 30]. With reservations, the service
providers or end users can explicitly specify the resources
that are reserved for the deployed VMs. These reservations
guarantee that the VM is entitled to the specified resources,
and will receive at least the specified amount as long as it de-
mands it. Resource guarantees are commonly employed to
impose service levels, similar to our performance-based ca-
pacity provisioning method. Moreover the described control
mechanisms can also be dynamically modulated and applied
to runtime, autonomic management [4].

The critical downside of employing VM reservations to
provide resource guarantees is that they create a hard limit
on the number of VMs that can be admitted to and powered
on in a particular cluster. Each time a VM is to be powered
on in the cluster, the hypervisor and the management end-
point check whether there are enough unreserved resources
to satisfy the VM’s reservations. The VM is admitted to the
cluster for power on, only if it passes this condition. This
process is known as admission control [30]. In addition to
VM power on, VMs pass through admission control when
resource configurations are changed, and during dynamic
placement actions that include migration of VMs across re-
sources such as hosts, resource pools or clusters.

Individual VM-level reservations share the same inherent
inefficiency as individual-VM-based capacity planning, as
the reservations present a strictly additive constraint over
VMs sharing the resources, without considering inter-VM
interference. Here, VM multiplexing again provides a highly
useful model for considering multi-VM characteristics for
providing VM resource guarantees, while improving overall
cluster utilization. Conceptually, we use VM multiplexing to
define joint reservations for the sets of “compatible” VMs.
While there is no direct resource management mechanism
to specify joint reservations, we use a commonly-overlooked
abstraction of virtualized clusters, i.e., resource pools, to this
effect. Resource pools are defined within individual hosts or
a cluster to provide a virtual abstraction layer that divides
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Figure 10: Cluster-level resource pools.

resources into multiple subsets. At the cluster level, one
can consider the entire resource capacity of the cluster as a
single monolithic root resource pool. Then, additional child
resource pools can divide the cluster capacity into exclusive
partitions [22, 29]. Resource control mechanisms such as
reservations and limits can also be defined at the pool level.
Figure 10 exemplifies a resource pool hierarchy, including
the root resource pool for a ten-host cluster. Two child re-
source pools with different reservations are defined under the
root pool. The remaining unreserved capacity is managed as
part of the root resource pool. VMs powered on in different
child pools are constrained by the child pool resources, while
VMs powered on directly under the root share the resources
available to the unreserved capacity pool.

We leverage resource-pool-level reservations in place of
VM-level reservations to define joint reservations. Using
VM multiplexing, we first use the SLA model to derive the
corresponding β values for the individual VM reservations.
We use T = 1 in the SLA constraint for reservations to
match the reservation model used in current hypervisors,
where reservations are enforced for each instantaneous sam-
ple (T = 1) rather than over a tunable time window (T > 1).
We employ the VM selection method to identify compatible
VMs and group them within the same resource pools. We
then apply joint-VM sizing with the same β values to define
the reservation levels for each resource pool. We consider
joint-VM sizing both with oracle knowledge of future de-
mand and by using a forecasting technique. In our evalua-
tion, we only consider VM pairs in each resource pool. While
the derived joint reservations are generally higher than indi-
vidual reservations, we make sure that they are substantially
smaller than individual host capacities to avoid creating any
artificial placement constraints.

We evaluate the benefits of VM multiplexing with joint
reservations for a pool of 441 VM traces obtained from the
aforementioned global cloud. We consider several clusters
with varying number of hosts. We measure the number of
VMs that pass admission control—that can be powered on—
for each cluster size with both individual VM-level reserva-
tions and joint, resource-pool level reservations. We con-
sider varying levels of reservations for VMs corresponding
to the β values in the range of [0.0, 0.2]. Figure 11 shows
the percentage of VMs that can be powered on in different
sized clusters for two β values. Here, β = 0.01 represents
stringent reservation levels for each VM, which are highly
“peak sensitive”. That is, the specified reservations are close
to the peak demand levels of VMs. In contrast, β = 0.10
represents more relaxed reservation levels, where the reser-
vations are closer to the average demand levels. Therefore,
reservations corresponding to lower β values exhibit higher
potential for improvement that can be exploited by joint
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Figure 11: VMs that are admitted for power on with

individual and joint reservations.

reservations. This effect is clearly visible between the two
plots of Figure 11. For β = 0.01, the average increase in
number of powered-on VMs with joint reservations is 44%.
This reduces to 14% with β = 0.10. The effectiveness of
joint reservations diminishes (to 3%) as we further reduce
reservations to reach β > 0.20.

Figure 11 shows the benefits of joint reservations using
both oracle knowledge of future demand and using forecast-
ing. The oracle results show the actual potential benefits of
joint reservations. The forecasting-based joint reservations
show the achieved benefits with a real runtime implementa-
tion. In this case, the number of powered-on VMs is gener-
ally slightly smaller than the oracle. The bars in Figure 11
show the improvement over individual VM-level reservations
for each cluster size with both approaches.
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Figure 12: Percentage of VMs that violate their SLA

with forecasting-based joint reservations.

With forecasting, an additional consideration is the viola-
tion of the SLA specified by the VM-level reservations. As
the oracle approach assumes complete knowledge of future
VM behavior, the chosen joint reservations completely sat-
isfy all individual reservations. With forecasting, the actual
β in future time horizon could be potentially greater than
the given β and thus leads to SLA breach. Figure 12 shows
the percentage of VMs with the actual β exceeding the given
β, for the entire range of β . Overall, more than 95% of the
VMs still meet their SLA. based on VM-level reservations.

Overall, VM multiplexing, in conjunction with resource
pool level joint reservations, significantly improves cloud uti-
lization efficiency, and the achievable consolidation level on
virtualized hosts while respecting the same VM-level SLA
requirements. Across the [0.0, 0.2] range of β, the average
improvement in the number of VMs that are admitted for
power on is 16%, with up to 75% improvements for stringent
reservations and small cluster sizes.

9. CONCLUSION
This paper advocates leveraging VM multiplexing to im-

prove resource utilization in compute clouds. The benefit
of VM multiplexing is that when the peaks and troughs in
multiple VMs are temporally unaligned, these VMs can be
consolidated and provisioned together to save capacity. This
paper presents three design modules that enable the concept
in practice. Specifically, a new SLA model reflects applica-



tion performance requirements; a joint-VM sizing technique
that estimates the aggregate capacity needs for multiplexed
VMs; and a VM selection algorithm for identifying most
compatible VM combinations. The proposed design modules
can be seamlessly plugged into existing resource provisioning
applications. VM multiplexing is evaluated with two exam-
ple applications: VM capacity planning and providing VM
resource guarantees via reservations. Experiments based on
data from an operational cloud demonstrate that the pro-
posed joint-VM provisioning significantly outperforms tradi-
tional approaches. In capacity planning, joint provisioning
uses 45% less physical machines for hosting the same num-
ber of VMs. With joint-VM reservations, VM multiplexing
improves the ratio of admitted VMs by 16% on average, and
up to 75% with stringent SLA requirements.
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