
1

Runtime Power Monitoring in
High-End Processors:
Methodology and Empirical Data

Canturk Isci & Margaret Martonosi

MICRO-36
12.03.2003
San Diego, CA 2

MotivationMotivation
!Power Matters!

!Need good Measurement/Modeling
techniques for Power & Thermally
aware/adaptive systems

!Need for Fast-Realtime Modeling
and Measurement to observe long
time periods

!Need live, run-time power/thermal
measures

3

THE BIG PICTURETHE BIG PICTURE

" To Estimate component
power breakdowns for
P4 at runtime…

Bottomline…

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Thermal
Modeling

Power
Phases

4

Questions We AnswerQuestions We Answer
!What kinds of techniques can we use

beyond simulation in power research?
Power Measurements without interfering

with the hardware
Power Estimation based on performance

counters
!How does power behavior of programs

change over their whole runtime?
(Power Phases further extend this analysis)

!How well such an estimation framework
can perform in comparison to actual
measurements
We show with several benchmarks, using

our synchronized measurement and
estimation setup

5

Performance
Monitoring

Real Power
Measurement

Power
Modeling

ResultsResults

Remainder of TalkRemainder of Talk

Performance
Monitoring

Real Power
Measurement

Power
Modeling

! Performance Monitoring
P4 Performance Counters
Performance Reader LKM

! Real Power Measurement
P4 Power Measurement Setup
Examples

! Power Modeling
P4 Power Model
Model + Measurement Sync Setup,

Verification
! Results

SPEC CPU2000
Desktop Applications

6

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Results

Performance MonitoringPerformance Monitoring

Performance
Monitoring

! Performance Monitoring
P4 Performance Counters
Performance Reader LKM

! Real Power Measurement
P4 Power Measurement Setup
Examples

! Power Modeling
P4 Power Model
Model + Measurement Sync Setup,

Verification
! Results

SPEC CPU2000
Desktop Applications

2

7

Live CPU Performance Monitoring Live CPU Performance Monitoring
with Hardware Counterswith Hardware Counters

! Most CPUs have hardware performance counters
! P4 Performance Monitoring HW:

18 Event Counters
18 Counter Configuration Control Registers

Configure how to count

45 Event Selection Control Registers
Configure what to count

Additional Control Registers

Figure from:

Brinkley Sprunt,
“Pentium 4 Performance
Monitoring Features”,
IEEE Micro, Jul-Aug
2002, pp. 72-82.

8

Our Event Counter: Performance ReaderOur Event Counter: Performance Reader

! Performance Reader implemented
as Linux Loadable Kernel Module
Implements 6 syscalls:

select_events()
reset_event_counter()
start_event_counter()
stop_event_counter()
get_event_counts()
set_replay_MSRs()

! User Level Interface:
Defines the events

$ Starts counters
Stops counters

$ Reads counters & TSC

9

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Desired Hit Rate (Benchmark Input)

A
cq

ui
re

d
H

it
R

at
es

Ideal Hit Rate Acquired L1 Hit Rate L1 hit rate from L2 Access

Performance Reader: Performance Reader:
Example ValidationExample Validation

!L1_Dcache
benchmark

!Controls cache
hit behavior

!Validated
against
measured
cache events

!Vary hit rate
from 0-100%

10

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Results

Processor Power MeasurementProcessor Power Measurement

Real Power
Measurement

! Performance Monitoring
P4 Performance Counters
Performance Reader LKM

! Real Power Measurement
P4 Power Measurement Setup
Examples

! Power Modeling
P4 Power Model
Model + Measurement Sync Setup,

Verification
! Results

SPEC CPU2000
Desktop Applications

11

P4 Power Measurement SetupP4 Power Measurement Setup

1mV/Adc
conversion

Clamp ammeter on 12V
lines on measured CPU

Voltage readings
via RS232 to

logging machine

Serial Reader
(PowerMeter)
(PowerPlotter)

Convert to Power
vs. time window

DMM reading
clamp voltages

12Po
w

er
Pl

ot
te

r
Po

w
er

Pl
ot

te
r :

 E
xa

m
pl

e
: E

xa
m

pl
e

“Branch exercise”
(Taken rate: 1)

“High-Low”“L1Dcache”
Array Size
1/100 of L1

“L1Dcache”
Array Size
x25 of L1~L2

“L1Dcache”
Array Size
x4 of L2

Initialization

Benchmark
Execution

“Fast”

3

13

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Results

Processor Power ModelingProcessor Power Modeling

Power
Modeling

! Performance Monitoring
P4 Performance Counters
Performance Reader LKM

! Real Power Measurement
P4 Power Measurement Setup
Examples

! Power Modeling
P4 Power Model
Estimation + Measurement

Sync. Setup, Verification
! Results

SPEC CPU2000
Desktop Applications

14

Define
Components

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Define
Events

Real Power
Measurement

! Verify total power against
measured processor power

Power
Modeling

! Convert counter based
access rates into
component power
breakdowns

Performance
Monitoring

! Gather counter info with
minimal power overhead
and program interruption

Define
Events

! Determine combination of
P4 events that represent
component accesses best

Define
Components

! Define components (I.e.
L1 cache, BPU, Regs, etc.),
whose powers we’ll model:
% from annotated layout

P4 POWER MODELP4 POWER MODEL

15

Defining Events Defining Events $$$$$$$$ Access RatesAccess Rates
! We determined 24 events to approximate access rates

for 22 components
! Used Several Heuristics to represent each access rate
! Ex: 2nd Level BPU:

Metric 1: Instructions fetched from L2 (predict)
Event: ITLB_Reference

Counts ITLB translations
Mask:

All hits
Expression: 8 x ITLB_Reference

Minimum 8 instructions per L2 line (128B / 16B)
Metric 2: Branches retired (history update)

Event: branch_retired
Counts branches retired

Mask:
Count all Taken/NT/Predicted/Mispredicted

! Need to rotate counters 4 times to collect all event data
Used 15 counters & 4 rotations to collect all event data 16

Access Rates Access Rates $$$$$$$$ Component PowersComponent Powers

!Governing relation:

From
Performance

Counters

From
Microarchitectural

Properties

Initially, area
based estimates

Later modified by
tuning benchmarks

Estimated by the
large power jump
during idle $$$$ low
utilization (upc)

17

Access Rates Access Rates $$$$$$$$ Component PowersComponent Powers

!Governing relation:

EX: Trace cache delivers 3 uops/cycle in
deliver mode and 1 uop/cycle in build mode:

! Total power is computed as the sum of all 22
component powers + measured idle power (8W):

)()()(
3

)()(TCClkPowerTCMaxPowerIDAccessRateTCAccessRateTCPower +•

 +=

18

Experiment SetupExperiment Setup

POWER
CLIENT

POWER
SERVER

1mV/Adc
conversion

Counter based
access rates

over ethernet

Voltage readings via
RS232 to logging machine

Convert voltage to measured power
Convert access rates to modeled powers
Sync together in time window

4

19

Tuning BenchmarksTuning Benchmarks

“Fast”

“Branch exercise”
(Taken rate: 1) “High-Low”“L1Dcache”

(Hit Rate : 0.1)
Measured
Modeled

20

CounterCounter--based Power Estimation:based Power Estimation:
Validation Step 2Validation Step 2

“Fast”

“Branch exercise”
(Taken rate: 1) “High-Low”“L1Dcache”

(Hit Rate : 0.1)
Measured
Modeled

Adjusting max
power coeff-s

on stressmarks

21C
om

po
ne

nt
 B

re
ak

do
w

ns
C

om
po

ne
nt

 B
re

ak
do

w
ns

Component Breakdowns for
“branch_exercise”

Colors for 4 CPU subsystems

Issue - RetireExecution

22

Complete Example: Complete Example: Retirement LogicRetirement Logic

! Initial area based Max power estimation:
MaxPower = Area% x Max Processor Power &
MaxPower = 6.5% x 72W = 4.7W

! Retirement Logic
defined from annotated die layout

! Max power & Clk power estimations after tuning:
MaxPower = 1.5W | ClkPower = 2W

! Final hardcoded power equation for retirement logic:
[] 2.0(3)0.5

(3)
(Ret)AccessRatePower(Ret) +⋅•=

! Access rate approximation
based on performance counters:

1∆Cycles
dUopsRetire

et)ClkPower(Ret)MaxPower(R
3

(Ret)AccessRatePower(Ret) +•

=

! Power relation for retirement logic:
Can retire at most 3 uops/cycle

23

Performance
Monitoring

Real Power
Measurement

Power
Modeling

ResultsResults

Power Estimation ResultsPower Estimation Results

! Performance Monitoring
P4 Performance Counters
Performance Reader LKM

! Real Power Measurement
P4 Power Measurement Setup
Examples

! Power Modeling
P4 Power Model
Model + Measurement Sync Setup,

Verification
! Results

SPEC CPU2000
Desktop Applications

24

Validation for Fidelity:Validation for Fidelity:
Benchmark Power BreakdownsBenchmark Power Breakdowns

High issue, exec. & branch
power

High L2 Cache PowerHigh L1 Cache PowerHigh Bus Power

5

25

Validation for Accuracy:Validation for Accuracy:
SPEC ResultsSPEC Results

Measured
Modeled

Gcc Gzip Vpr Vortex Gap

Crafty

26

SPEC2000 Results SPEC2000 Results

VPR Elaboration:
Integer benchmark
2 runs: 1st $ Placement, 2nd Route
1st run much stable power, 2nd more variable
Placement has higher miss than route < L1 & L2 pwr>
Significant FPE power due to x87_SIMD_moves
Twolf Elaboration:(Integer benchmark)
Several loop computations traversing memory
<High Memory Power>
Although ~const. Total power, component powers have
slight gradients

Equake Elaboration: (FP benchmark)
Initialization and computation phases
FP intensive mesh computation phase
Initialization with high complex IA32 instructions

27

Average SPEC Total PowersAverage SPEC Total Powers

!1st set: Overall, 2nd set: Non-idle power
!Average difference between measurement

and estimation: 3W
!Worst case: Equake (5.8W) 28

StdevStdev of SPEC Total Powersof SPEC Total Powers

!1st set: Overall, 2nd set: Non-idle power
!Average difference: 2W
!Worst case: Vortex (3.5W)

29

Desktop ApplicationsDesktop Applications
!We aim to track low power utilizations

as well.
!Desktop applications are usually low

power with intermittent power bursts
!3 applications, with common operations

such as open/close application, web,
streaming media, text editing, save to
disk, statistical computations.

30

ConclusionsConclusions
! Contributions:

Portable runtime real power measurement system
Performance counter based runtime power model

and runtime verification with synchronous real power
measurement for arbitrarily long timescales!

Physical component based power estimates for
processor, which can be used in power phase
analyses and thermal modeling

! Outcomes:
We can do reasonably accurate real power

measurements at runtime without interfering with
HW

We can perform runtime power modeling, with the
tiny performance reader without inducing any
significant overhead to power profile

Component power breakdowns can be used to
identify program power phases

6

31

Related WorkRelated Work
! Implementing counter readers:

PCL [Berrendorf 1998], Intel VTune, Brink & Abyss [Sprunt 2002]

! Using counters for Power:
CASTLE [Joseph 2001], power profilers
event driven OS/cruise control [Bellosa 2000,2002]

! Real Power Measurement:
Compiler Optimizations [Seng 2003]
Cycle-accurate measurement with switch caps [Chang 2002]

! Power Management and Modeling Support:
Instruction level energy [Tiwari 1994]
PowerScope: Procedure level energy [Flinn 1999]
Event counter driven energy coprocessor [Haid 2003]
Virtual Energy Counters for Mem. [Kadayif 2001]
ECOsystem: OS energy accounting [Ellis 2002]

32

Our Work in ComparisonOur Work in Comparison
!Power estimation for a complex,

aggressively clock-gated processor
!Component power estimates with

physical binding to die layout
Laying the groundwork for thermal

modeling

!Portable implementation with current
probe and power server LKM

!Power oriented phase analysis with
acquired power vectors

33

EOP
34

Support/Detail SlidesSupport/Detail Slides
!FOLLOWING SLIDES
INCLUDE MORE DETAILS
OR SUPPORT FOR THE 4
PARTS OF THE TALK, I
HAVE THEM HERE FOR
COMPLETENESS AND IF
SOMEONE WONDERS
STH THAT I HAVE THE
ANSWERS HERE

35

DETAILS for MOTIVATIONDETAILS for MOTIVATION
!Following (blue) slides are the

details of the motivation slide I
have

36

MOTIVATIONMOTIVATION
! Power Matters!

Performance improves exponentially
& SO DOES POWER DENSITY

Chip areas increase 7%/year
Battery Life: Improves Much Slower
Thermal Issues

Follows power density
Packaging costs: +$1/W over ~40W

! Need good Measurement/Modeling techniques for Power
& Thermally aware/adaptive systems
Using Measurement to probe microarchitectural details

CASTLE, data activity experiment
Compiler Level Power Optimizations

SW Power Profiling and Optimization
Power aware OS

power modeling for decision making
Dynamic thermal/power management

Thermal hotspots & Power threshold

7

37

MOTIVATIONMOTIVATION
! Power Models reflecting modern processors

Clock gating, power
Voltage regulation, di/dt

! Need for Fast-Realtime Modeling and
Measurement to observe long time periods
Thermal time constants: O(s)
Not feasible even with architecural simulators

i.e.: 1s of real run '~5 x IPC hrs of WATTCH simulation

! Need live, run-time power/thermal measures
Dynamic Thermal Management
Power-Aware OS & Systems control

38

MotivationMotivation
! Battery technology increases much slower

! Packaging costs:
+$1/W over 35-40W [2]

Back to slide

39

Details for Performance CountersDetails for Performance Counters

!These Slides are support and
more detail slides related to:
!performance counters
!our LKM performance reader
!Our L1Dcache and branch

exercise benchmarks

40

P4 Detector P4 Detector -- Counter ClustersCounter Clusters
Event Detectors Event Counters

4 bit wide
bus

P4
 C

om
po

ne
nt

s

EV
EN

TS

41

Counters, Counters, ESCRsESCRs & & CCCRsCCCRs

Simplified Recipe:
1. Select Event to count
2. Select a counter

(also defines CCCR)
3. Select an ESCR
4. Set ESCR fields
5. Set CCCR fields
6. Enable CCCR 42

Counter OverviewCounter Overview
! Counting Types

Non-retirement:
At-Retirement:

Can count BOGUS vs
NBOGUS, Tag uops,etc.
Mechanisms:

Front end tagging
Execution tagging
Replay Tagging
No Tags

Also:
Event Counting
Event Based Sampling
Precise EBS

! Event Types
59 event classes
100s of events to count
Metric Classifications:

General
Ex: Speculative Uops retired
Branching
Ex: Mispredicted conditionals
Trace Cache and Front End
Ex: Processor N deliver mode
Memory
Ex: MOB Load replays
Bus
Ex: Prefetch bus accesses
Characterization
Ex: Packed SP retired
Machine Clear
Ex: Memory Order Machine
Clear

8

43

Counting MechanismsCounting Mechanisms
!Counting Types

Non-retirement:
Events occur any time during execution

At-Retirement:
Events at the retirement of instruction

Can count BOGUS vs NBOGUS, Tag uops to
count, etc.

Terminology&
Mechanisms:

Front end tagging (i.e. LD/ST retired)
Execution tagging (i.e. packed_DP_retired)
Replay Tagging (i.e. L1 misses)
No Tags (i.e. uops retired)

Also:
Event Counting | IEBS | PEBS

44

At Retirement Counting TerminologyAt Retirement Counting Terminology

BOGUS/NBOGUS (speculative)
Tagging (count uops that encounter
event)
Replay (Data speculation)

45

Verifying Counter ReaderVerifying Counter Reader
!1) L1Dcache_exercise:

Uses pointer assignment
L1=8K, L2=256K
Array Size = (L1 Size/Hit Rate)

i.e. for 10% Hit rate: 80K & 20K entries
Array Size < L2 size

Array elements PRBS of array indices
Bench loop:

new index (array[old index]

46

……Verifying Counter ReaderVerifying Counter Reader
!2) branch_exercise:

Uses random number comparison
Assigns 400K PRBS array outside bench loop

To avoid rand() instructions in bench loop
bench loop:

Compares array index to threshod
Threshold = RAND_MAX*TakenRate

Repeats 1000 reseeding each time
However gcc adds 2 more branches into

bench loop:
Loop exit condition (Prediction ~ 100%)
Unconditional JMP (Prediction ~ 100%)

Our Branch’s Expected Mispredict Rate:
~ (0.5 - |TakenRate – 0.5|)

47

……Verifying Counter ReaderVerifying Counter Reader
!2) branch_exercise results:

Ex:
branch_exercise
Taken Rate=0.5

Branch Prediction Experiment

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1

Desired Taken Rate

A
cq

ui
re

d
R

at
es

Approximated Mispredict Rate
Our Branch's Taken Rate

Back

48

Details for Real Power MeasurementDetails for Real Power Measurement

!These slides provide more detailed
description of
Machine under test
real power measurement method
P4 power lines

9

49

P4 DetailsP4 Details
!Karelian.ee:

P4 – 1.4GHz
0.18µ, C4-FC-PGA-423
Heatsink $ Folded Fin
M6, Al interconnect
Die Size: 217 mm2

Package Size: 5.34cm x 5.17cm
Power: Idle/typ./max=??/51.8/71W
D$1&T$1/L2: 8K&12KUops/256K
Voltage: 1.7/1.75V

50

MEASUREMENT MethodMEASUREMENT Method
! Select Power lines that reflect CPU power

P4 uses 12 V lines

! Clamp the current probe over the 12V lines
1mV/Adc conversion

! Connect the clamp into DMM
! Send Voltage reading over serial
! Log the voltage readings

Convert to instantaneous power as:
12 x Vsample x 1000

! Log Power values
! Plot Power values

51

MEASUREMENT ToolsMEASUREMENT Tools
!Poll serial port ~20ms

quicker & overkill, slower & overlook
!Compute running average
!sample every ∆t you select

Easier to sync with Power Model
!PowerMeter:

Convert voltage reading to power and log
P=12 x Vread x 1000

!PowerPlotter:
Plot Power samples over sliding time

window
100 s history with 1000 samples (∆t = 100ms)

52

Current ProbeCurrent Probe
!Fluke i410
!Uses Hall Voltage to measure current

and convert to Voltage:
1mV / Adc

!Range: 0.1 – 400A
!Accuracy: 3.5%
!Generated voltage is fed to DMM
!Compared against the Ppro Amoeba

shunt setup for verification
& & & & & & & & & & & & & & &

53

Clamp Clamp vsvs ShuntShunt

sampled current for L1Dcache from clamp

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

current

current for grep from shunt

0

1

2

3

4

5

6

7

0 100 200 300 400

100 ms

A Series1

current for grep from clamp

0
1
2
3
4
5
6
7
8
9

0 100 200 300 400 500 600

100 ms

A Series1

sampled current for L1Dcache from shunt

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

current

54

DMMDMM
!Agilent 34401A
!Measurement Motive:

We should sample as quick as possible
(grep case)

!Measurement Setup:
Fast 4 digit, Autozero OFF, Display OFF

From [8], 1000 readings/s
(x150 faster than fast 6 digit)

!Serial Interface:
From [9] 55 ASCII readings /s

Polling serial port faster than 20ms is overkill

10

55

P4 Power LinesP4 Power Lines
! Which power lines should we cut / clamp?

[5] shows the power lines:
1-CPU power connector
13-System power connector
P1 $ 13 & P2 $ 1

[6],[7] say P4 uses 12V lines
for CPU, rather than 5V lines

Both P1 & P2 have 12,
5 and 3.3 V lines

I run branch_exercise (takenRate=1) and
gzip_static & obtain the current variation
on the lines

& & & & & & & & & & & & & & & &

56

Current on Power LinesCurrent on Power Lines
Current on Connector P1

line7 (12V)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80

time (s)

I [
A

]

Series1

Current on Connector P1
lines1,3,,6,18,19,20,22 (5V)

0

0.5

1

1.5

2

2.5

0 20 40 60 80

time (s)

I [
A

]

Series1

Current on Connector lines
11,12,23 (3.3V)

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

time (s)

I [
A

]

Series1

Current on connector P2
line1 (3.3V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80
time(s)

I(A
)

Series1

Current on connector
P2 line14 (5V)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70
time (s)

I [
A

]

Series1

Current on Connector
P2 line 3 (12V)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70

time (s)

I [
A

]

Series1

Current on Connector
P2 line7 (12V)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70
time (s)

I [
A

]

Series1

Current on connector
P2 line 9 (5V)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70

time (s)

I [
A

]

Series1

Reveals ALL 3 12V lines’ currents follow CPU
activity & All add to CPU Power! Back

57

Details for Power ModelDetails for Power Model
!These slides provide more detail

for:
How we define the 22 components
Used counters and the rotation

scheme
Tuning

58

Defining ComponentsDefining Components

59

P4 Architecture P4 Architecture vsvs LayoutLayout

Components to Model:
1) Bus Control
2) L2 Cache
3) 2nd Level BPU
4) ITLB & Ifetch
5) L1 Cache

6) MOB
7) Mem Control
8) DTLB
9) Int EXE
10)FP EXE
11)Int RF

12)FP RF
13)Decode
14)Trace $
15)1st Level BPU
16)Microcode ROM
17)Allocation

18)Rename
19)Inst-n Qs
20)Schedule
21)Inst-n Qs
22)Retirement

Back
60

Counter RotationsCounter Rotations

Back

11

61

Area Based Power Estimate Area Based Power Estimate ––
Total Power ResultTotal Power Result

“Fast”

“Branch exercise”
(Taken rate: 1) “High-Low”“L1Dcache”

(Hit Rate : 0.1)
Measured
Modeled

62

After Tuning?After Tuning?

“Fast”

“Branch exercise”
(Taken rate: 1) “High-Low”“L1Dcache”

(Hit Rate : 0.1)
Measured
Modeled

63C
om

po
ne

nt
 B

re
ak

do
w

ns
C

om
po

ne
nt

 B
re

ak
do

w
ns

Component Breakdowns for
“branch_exercise”

Colors for 4 CPU subsystems

Issue - RetireExecution

