Program Behavior Prediction Using a Statistical Metric Model

Ruhi Sarikaya, Canturk Isci and Alper Buyuktosunoglu

Workload Prediction and Adaptive Management

- Dynamically-varying Workloads
- Runtime Monitoring
- Workload Characterization, Classification and Prediction
- Dynamic Adaptations for Resource/Power Management

Predicting Workload Behavior

- Define workload features
- Determine future characteristics

Existing Techniques:
- Last Value (Strawman/Reactive)
- History Based (Statistical)
- Table Based (Patterns)

Our Approach: Statistical Metric Modeling
- Inspired from natural language modeling
- Workload features ⊗ words in language
- Workload patterns ⊗ grammar structure
- Model workload structure at runtime
- Build metric probability distributions
- Predict future characteristics

Statistical Metric Model (SMM)

SMM Overview:

- Probability distribution $P(s)$ over sequences s:

 \[s = (s_1, s_2, ..., s_l) \]

- Ex: $P(\text{"How are you doing"}) = 0.001$

- Difficult to compute $P(s) = P(s_1, s_2, ..., s_l)$

- Decompose the probability instead:

 \[P(s) = P(s_1) \times P(s_2 | s_1) \times P(s_3 | s_2, s_1) \times ... \times P(s_l | s_{l-1}, ..., s_1) \]

- Ex: $P(\text{"How are you doing"}) = P(\text{"how"}) \times P(\text{"are\"} | \text{"how"}) \times P(\text{"you\"} | \text{"are\"}) \times P(\text{"doing\"} | \text{"you\"})$

- Use n-gram Approximation:

 Assume each word depends only on the previous n words

 \[P(s) = \prod_{i=1}^{l} P(s_i | s_{i-1}, ..., s_{i-n+1}) \]

- Apply model smoothing to conditional distributions to compensate for data sparsity

SMM for Workload Behavior Prediction:

- **Global metric modeling**:

 \[P_{global}(s_{l-1}) \]

- **Temporal metric modeling**:

 \[P_{temporal}(s_l | s_{l-1}, ..., s_{l-n+1}) \]

- Overall model:

 \[P_{final} = \beta_1 \cdot P_{global} + \beta_2 \cdot P_{temporal} \]

Experimental Results

- More Important for SMM:

 - More variability
 - Harder to predict

- Prediction Accuracy:

 Across all workloads: 20% improvement

 Variable workloads: 40% improvement

 Repetitive runs (x2)

 Additional 15% improvement across all workloads

Summary

Primary Contributions

- New workload behavior prediction approach Inspired by language modeling
- Evaluation with a comprehensive set of benchmarks and datasets
- Significant improvement in accuracy over prior approaches

4 Main SMM Strengths

- Models long-term global patterns in application behavior
- Can track and predict variable-length patterns
- Resilient to small fluctuations in workload behavior
- Adapts and improves over time, as it learns more it predicts better

Evaluation Highlights

- Improve prediction accuracy by 40% for variable workloads
- Average improvement of 20% across all benchmarks
- Additional 15% improvement with recurring workloads

© 2010 IBM Corporation