Identifying Program Power Phase Behavior Using Power Vectors

Canturk Isci & Margaret Martonosi Princeton University

> WWC-6 10.27.2003 Austin, TX

<section-header><list-item><list-item><list-item>

Our Power Phase Analysis

♦Goal:

- Identify phases in program power behavior
- Determine execution points that correspond to these phases
- Define small set of power signatures that represent overall power behavior

Our Approach – Outline:

- Collect samples of estimated power values for processor sub-units < *Power Vectors*> at application runtime
- Define a power vector similarity metric
- Group sampled program execution into phases
- Determine execution points and representative signature vectors for each phase group

Analyze the accuracy of our approximation

Motivation

Characterizing power behavior:

- Future power-aware architectures and applications
- Dynamic power/thermal management
- Architecture research
- Utilizing power vectors:
 - Direct relation to actual processor power consumption
 - Acquired at runtime
 - Identify program phases with no knowledge of application

Conclusion

- Presented a power oriented methodology to identify program phases that uses power vectors generated during program runtime
- Provided a similarity metric to quantify power behavior similarity of different execution samples

19

- Demonstrated our representative sampling technique to characterize program power behavior
- Can be useful for power & characterization research:
 - Power Phase identification/prediction
 - Reduced power simulation
 - Dynamic power/thermal management

Related Work

- Dhodapkar and Smith [ISCA'02]
- Working set signatures to detect phase changes
 Sherwood et. al. [PACT'01,ASPLOS'02,ISCA'30]
- Similarity analysis based on program basic block profiles to identify phases
- Todi [WWC'01]
 - Clustering based on counter information to identify similar behavior

✤ Our work in comparison

- Power oriented
- Power behavior similarity metric
- Runtime
- No information about the application is required
- Bounded approximation error with thresholding 20

Powe	Defining	Events -> Access Rates
e r V	for 22 compo	ed 24 events to approximate access rates onents I <u>Heuristics</u> to represent each access rate
ė	Examples:	Access Heuristics
t	Bus Control	$\frac{IOQ Allocation}{\Delta Cycles_1} + \frac{Bus \ Ratio \cdot FSB \ Data \ Activity}{\Delta Cycles_2}$
r	Front End BPU	$\frac{8 \cdot ITLB \ Reference}{\Delta Cycles_1} + \frac{Branch \ Retired}{\Delta Cycles_2}$
Co	L1 Cache	$\frac{Ld Port Replay + St Port Replay}{\Delta Cycles_1} + \frac{Front End Event}{\Delta Cycles_2}$
m	Trace Cache	$\frac{Uop \ Queue \ Writes}{\Delta Cycles_1}$
р О	Integer Execution	$2 \cdot \left(\frac{Uop Queue Writes}{\Delta Cycles_1} - FP \ Exe. \ Access \ Rate\right) -$
ne		$L1 Cache Access Rate - \frac{Branch Retired}{\Delta Cycles_2}$
n t s		te counters 4 times to collect all event data punters & 4 <u>rotations</u> to collect all event data ²⁵

444

Gcc Total Measured Power

¹⁰⁰ Time (s)

Almost identical power behavior at 30, 50, 180s.

show similar total power;

88, 210 and 230 share

Gcc Elaboration:

Very variant power

Although 88s, 110s,

140s, 210s and 230s

20

GZIP Total Measured Power

²⁴⁴ Time (s)

344

194

Gzip Elaboration:

Much regular power

Spurious similarities

distinguished by the

such as 100-150s

and 200-280 are

144

behavior

Matrix

Gzip

